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Figure 1. Overview of our model: We trained a VAE that converts an image into a 3D tri-plane representation, with a downscaled small
tri-plane as a latent intermediate, which can be coupled with a diffusion model. In the reverse process, we diffusion the latent and decode
back to the full tri-plane, which can be neural rendered to new views or depth models.

Abstract

In recent years, 3D computer vision has made tremen-
dous progress with the emergence of Neural Radiance
Fields (NeRF), enabling free-viewpoint rendering with im-
plicit representations. However, the generation and editing
of a NeRF scene is a trivial task. Existing work in creat-
ing 3D representation either requires large computing re-
sources or training data. In this work, we take advantage
of the generation and editing capability of diffusion mod-
els and use it with an efficient tri-plane 3D representation
of NeRF. We propose tri-plane diffusion model, which dif-
fuses on the tri-plane representations to create novel, high-
quality 3D scenes with minimal computational overhead.
Our approach circumvents the limitations of previous meth-
ods by leveraging the inherent flexibility and efficiency of la-
tent diffusion models for seamless generation and editing of
NeRF scenes. Through our experiments and evaluations, we

propose a new 3D-consistent training scheme and demon-
strate that our model can learn 3D tri-plane representations
from a dataset of 2D images, and can be coupled with dif-
fusion models for arbitrary generation and editing, paving
the way for more accessible and interactive 3D content cre-
ation and manipulation. Unlike 2D diffusion models, our
method gives a full scene, facilitating efficient unrestricted
view synthesis and shape creation. Moreover, our diffusion-
centric technique inherently allows for conditional gener-
ations like masked completion or single-view 3D synthesis
during the inference process.

1. Introduction

Diffusion models have shown extraordinary performance
in generating 2D images [50, 51]. The next logical step
is the synthesis of 3D scenes. 3D Scenes are essential for
developing embodied AI training environments, generating
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virtual worlds for virtual reality applications, and creating
immersive experiences in gaming and other applications.
Making just one 3D asset requires a lot of human effort and
is time-consuming. 3D scene synthesis can speed up the
process significantly, reducing human labor, time, and cost.
In this work, we study the task of 3D scene synthesis using
diffusion models.

However, moving from 2D to 3D is not straightforward.
First, 3D assets storage complexity increases exponentially.
Second, processing 3D examples requires more complex
models, which are hard to train. Finally, even if we as-
sume unlimited storage and computing resources, another
problem is the availability of large-scale 3D datasets, which
are crucial for achieving good performance. Scaling a 3D
dataset to the scale of ImageNet will be an enormous task
for the computer vision community.

A 3D scene can be represented with point clouds,
meshes, Voxels, and Neural Radiance Fields (NeRF). Point
clouds, meshes, and voxels are storage-intensive and hard
to scale. On the other hand, with NeRF, a 3D scene can
be compressed in the weights of a neural network, reduc-
ing the storage considerably. However, in order to store
a scene, a neural network needs to be trained per scene,
which is compute-intensive even for one scene. Recently,
the community has been moving to use a triplane repre-
sentation that effectively balances both storage and comput-
ing [1, 6, 12, 17, 20].

To bypass the dependency of large-scale 3D dataset
availability, the community has built methods that lever-
age large-scale 2D datasets to train a model for a 3D task
[1, 6, 12, 53]. Generative models like generative adversarial
networks(GANs) have been extended from the 2D domain
to 3D- aware neural field generation [6, 53]. One example
is Eg3D [6], where they trained a StyleGAN to produce im-
ages conditionate to pose. They showed that even though
their model was trained on 2D images, their model could
capture 3D information and construct a 3D scene.

This work proposes a diffusion model which generates
3D scene triplane representations efficiently with high qual-
ity. We also designed a training Loss that enables the model
to pick up 3D information from 2D images. Our method
can increase the diversity of examples on 3D datasets by
learning priors and generating new 3D object scenes.

2. Related Work
Generative Models There have been many efforts in ma-
chine learning to generate high-quality, photorealistic im-
ages, and there is a great number of works have been pro-
posed in recent years. Notable among which are the gen-
erative adversarial networks (GANs) [18, 25, 26, 28, 54],
VAE [30,60], and auto-regressive models [59]. Particularly,
GANs have been utilized extensively due to the high quality
of the generated image, and have a wide range of applica-

tions including attribute editing [32, 34, 46, 56], data aug-
mentations [31, 37], and Style transfer [45, 46, 67].

More recently, the success of diffusion models has led
to a number of techniques for more realistic generation
and demonstrated the wide distribution they can gener-
ate [14,16,24,43,48,52,57]. The Denoising Diffusion Prob-
abilistic Models (DDPM) [23] is the most widely used dif-
fusion model; however, it suffers from expensive computing
resources and time. Thus, authors in [50] have migrated
the diffusion into latent space and made them more efficient
while preserving the generation quality. As the computa-
tional overhead is even more in the 3D regime, where our
focus lands, efficiency is pivotal to our research. Thus, our
work is based mainly on [50] to take advantage of perfor-
mance.

3D representation There is an increasing trend in com-
puter vision recently to use neural fields as 3D represen-
tations of scenes [2, 3, 40, 42, 49, 64], using implicit rep-
resentations. In recent years, there are endless efforts on
improving quality and performance. For example, Pixel-
NeRF [64] significantly decreases the number of images to
fit a NeRF model by using a convolutional prior. In a more
recent work, instant-ngp [42] uses a hash-table approach to
reduce the fit time and capability of NeRF.

On the other hand, more explicit neural fields [6, 21, 63]
consider the tri-plane to be the preferred type of neural field
representation. [21] maps the neural fields into point cloud
for meshed object generation. Multiple tri-planes can be
utilized simultaneously for 4D rendering [4] to create novel
views of an object moving through space and time. Tri-
planes can use planar factorization [4] for volumetric ren-
dering that allows 2D, 3D static, 3D dynamic, and 4D dy-
namic rendering. A tri-plane can also be used with a 3D-
aware CDM [20] to produce high-quality images. A 3D-
aware GAN from [6] and tri-planes have been used in a
3D-aware video editing system for facial images [63]. A
conditional NeRF-based decoder can reconstruct image la-
tents into a tri-plane representation [53] then frozen and
used with an autoregressive transformer to generate novel
views. A 2D CDM and optimized radiance field [39] can
reconstruct 3D objects from a single 2D image, and [1] pro-
vides an example of incorporating a tri-plane NeRF directly
into the function of a diffusion model. Nonetheless, directly
applying the tri-planes on DDPM is time-consuming and
hardly has any control over the content.

3D Generation With the recent development of gener-
ative models, there has been exponential progress in the
computer vision community on 3D content generation.
There are great works utilizing GANs [5, 6, 19, 53, 55, 66].
Nonetheless, with the more powerful diffusion models,
more possibilities have been explored, such as 3D object
generation [1, 9, 21, 41], text-to-object [33, 36, 47], scene
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generation [4, 10, 29, 58], novel view synthesis [7, 11, 20,
36, 39, 61], scene editing [22], and Radiance Field genera-
tion [15].

The authors in [62] formulate 3D awareness as a multi-
view 2D image generation task, but their method does not
explicitly determine the underlying 3D structure. An ar-
chitecture combining a Point Cloud variational autoencoder
(VAE), a 3D aware U-Net, diffusion model, tri-plane fea-
tures, and MLP decoder [21] explicitly determines 3D struc-
ture. Some models [33, 47] use 2D text-to-image diffu-
sion to perform text-to-3D synthesis. Similarly, a condi-
tional diffusion model (CDM) as used in [39] takes ad-
vantage of previous work [47] in text-to-image diffusion to
build scene data for a radiance field using text prompt dif-
fusion constraints to produce plausible novel views. These
image-augmented text prompts can substitute for the alter-
nate views normally coming from an underlying data set.
The technique in [12] uses a 2D label map to explicitly de-
termine 3D structure and generate different viewpoints, but
does not control camera position of the rendered output.

For 3D scenes from 2D images far from the target view,
a tri-plane based Neural radiance field (NeRF) and CDM
can be combined [20] to mitigate occluded views and pro-
duce detailed 3D objects. A diffusion model can be directly
integrated with an encoder, tri-plane latent, and MLP [1] to
become a 3D-aware denoiser, using intermediate denoising
steps to create inductive bias toward 3D scene consistency.
Input views can be reverse projected from 2D image fea-
tures into a 3D volumetric space [7] from which projection
back to 2D space and camera parameters can create view-
ing position specific novel views. A diffusion model can
be trained on optimized neural field MLP weights under the
guidance of a transformer-based network [15] to enable dif-
fusion modeling over 3D shapes and 4D mesh animations.
Novel views of human faces [63] through video editing us-
ing 3D-aware methods from [6] decompose and reconstruct
facial images for novel views. In [4], 3D scene data is stored
for reference by an MLP, decoupling data storage capacity
from speed. This method uses a spatial and temporal struc-
ture composed of six NeRF feature planes to compute a fea-
ture vector for a 4D point in spacetime to enable novel view
synthesis of objects in motion, but similar to [12,20,39,63]
offers no explicit camera control. Volumetric radiance fields
can be generated directly [41] by using a voxel grid repre-
sentation of an object and a denoising formulation allowing
a diffusion model to learn from a data set of 3D objects
represented as radiance fields. However, they are resource-
demanding and not efficient.

3. Preliminary
3.1. Diffusion Model

Diffusion models are generative models inspired by non-
equilibrium thermodynamics. They are usually composed

Figure 2. The forward process of diffusion is represented by Eq. 1
and its reverse process is represented by Eq. 2, which may be rep-
resented simply by q and p.

of two main components: the forward process (also known
as the diffusion process) and the reverse process (referred
to as the reverse diffusion process). In the forward process,
data (typically an image) is gradually introduced to noise,
while the reverse process involves converting the noise back
into a sample that originates from the target distribution.

During the forward process, Gaussian noise is added to
the image iteratively and incrementally via a Markov chain
until the input image becomes nothing but Gaussian noise
and all information from the input image is lost. At this
point, the input image x0 has been mapped into xT , the
final image containing nothing but Gaussian noise. The for-
ward process can be parameterized with βt as the variance
schedule:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

On the other hand, the reverse process is to learn to
turn the fully noised image xT back into an image x0 and
thereby learn to start with any noised sample xT plus a seed
to then generate an x0 which is representative of the data set
used in training:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

The forward and reverse diffusion process is depicted in
Fig. 2.

Latent Diffusion Models. In Latent Diffusion Models
(LDM) [50], the diffusion model maps the input image into
a latent space with a pre-trained VAE. The latent space has
less data overhead in the diffusion process. compared to
the DDPM. The latent space is usually in height of H/f
and width of W/f , where the H and W are the original
height and width of the input image. During inference, the
VAE decoder is used to decode the diffused latent to de-
sired images. The authors in [50] demonstrate that the
latent diffusion models have the capability of generating
high-resolution images while avoiding excessive compute
demands.
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3.2. Neural Radiance Field (NeRF)

A Neural Radiance Field [40] is an implicit, volumet-
ric representation of a 3D object scene given as a density
field σ and RGB color field ξ defined over a 3D space. As
discussed in [40], the 3D scene is calculated as a 5D func-
tion taking the coordinates (x,y,z) of a point and the direc-
tion (θ,ϕ) of a ray of light passing through that point and
outputting a vector of color and density (c, σ) which tells
us what we need to know about light, shadow, and trans-
parency of a pixel at a location; thus, allowing the genera-
tion of a 2D view from a specific angle and viewport.

To render a view from a specific camera pose (denoted
by camera parameters p), we can consider each pixel on the
rendered image to be a ray shooting into the scene. With ray
casting logic, one can use volume rendering [38] to render
the RGB color C(r) along the given ray r(t) = o + td in
the radiance field following the equation below:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt , (3)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
. and tn and tf

are the near and far bounds of rendering. The overall flow
is shown below on Fig. 3

Figure 3. Overall NeRF rendering flow.

For the purposes of this paper, NeRF provides evidence
that a 3D representation can be built up from 2D images via
some sort of ray projection and volumetric rendering. We
can also see this volumetric rendering and pixel calculation
in a different form in the method of tri-plane features.

3.3. Tri-Plane Features

Although NeRF has an amazing ability to represent a 3D
scene, it has a series of drawbacks, one of which is that it
relies on implicit representations, i.e. MLP. There is no ex-
plicit control over the scene. Another pitfall is that for each
pixel in the 3D, while ray casting, it has to go over 8 layers
of the Neural Network to get the color and density (c, σ)
pair, which is time-consuming and inefficient. On the other
hand, the voxel representation [35], which stores all voxels
of color and density in a cube, has speed and explicit con-
trol. Nevertheless, it requires a cubed amount of memory
to store the values, which makes it resource-demanding. To
overcome such limitations, the authors in [6] proposed a

hybrid tri-plane representation of the 3D scene, occupying
the advantages of both.

In [6], instead of using a full cube of voxels for ex-
plicit representation, they use feature planes along three
axis-aligned orthogonal planes. The XYZ planes comprise
the tri-plane representation, denoted as S. For any 3D po-
sition x ∈ R3, it can be projected onto each of the three
feature planes, retrieving the corresponding feature vector
(Fxy , Fxz , Fyz) via bilinear interpolation. Then the fea-
tures can be put together through summation and fed into
a lightweight MLP to interpret 3D features F as color and
density (c, σ). The overall structure is shown in Fig 4.

The tri-plane representation has been increasingly pop-
ular in recent months as 3D representations [6, 17], gener-
ations [1, 20], and interpretation [4], proving its efficiency
and effectiveness.

4. Method
Our overall method consists of two stages approach sim-

ilar to Latent Diffusion models. In stage 1, an encoder-
decoder is trained to learn a z intermediate triplane repre-
sentation. Where the encoder is a CNN that receives an im-
age as input and outputs an intermediate triplane represen-
tation, the decoder consists of a CNN and a neural render
model. The CNN receives an intermediate latent represen-
tation and outputs an upscaled triplane representation which
is fed to the neural render to generate an image given a cam-
era parameter. Figure 5 illustrate stage 1 training. In stage
2, a diffusion model is trained to generate the intermediate
triplane representations. Figure 6 illustrate stage 2 training.

4.1. Stage 1: Triplane Intermediate Representation

Let S be a triplane representation of a 3D scene, and xp

an RGB image for camera parameters p. The objective of
stage 1 is to learn a model f such that

Figure 4. Tri-plane overview. The red cube indicates a 3D position
x aggregated from three feature planes
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Figure 5. Stage 1 Training. An image is fed to an encoder-decoder to learn a tri-plane representation. The tri-plane representation is fed
to the neural render to generate views given the camera parameters. Then the loss is computed regarding the generated view with the
ground-truth gt.

Figure 6. Stage 2 Training. An image is encoded to get the inter-
mediate triplane representation. The forward process adds noise to
compute z1, . . . zT . The diffusion process denoises the zt, . . . , z0.
The decoder upscales the intermediate triplane representation.

f(xp) = S (4)

In this work, the model f consists of an autoencoder ar-
chitecture where the image encoder E is trained to output
the intermediate triplane representation z, and the decoder
D is a triplane decoder trained to output the triplane repre-
sentation S. Note that z is a low dimensional representation
of S, and the purpose of the decoder D is to upscale the
intermediate representation z to S.

E(xp) = z; D(z) = S (5)

In order to force the models to learn 3D information, a
neural render function ψ defined as

ψ(S, p) = xp (6)

where S is the triplane representation and p is the cam-
era parameters for a target view xp. Given a set of images
with different camera parameters xp0 , xp1 , . . . , xpN our loss
function is defined as

L =

N∑
j

N∑
i

Lp(x
pi , ψ(f(xpj ), pi)) (7)

where Lp is the perceptual loss [65]. In other words, for
a given triplane f(xpj ), multiple views p0, p1, ..., pN can be
computed with ψ. To minimize the loss, ψ(f(xpj )) should
be similar to xpi for i ∈ 1..N . This will encourage the
model to encode 3D information in its representation. In
practice, not all views pi are used for computing the loss
due to memory resources. In our case, we used N = 2 in our
experiments due to limited resources. Figure 5 illustrates
how the loss L is computed.

4.2. Stage 2: Diffusion Training

The purpose of stage 2 is to increase the diversity of the
synthesis of triplanes. In order to reduce computation and
training time, the diffusion model is applied at the inter-
mediate triplane representation z. Note that using the full
triplane representation for the diffusion model will result in
increased computation time due to the size of the data.

Let z0 = E(xpi) where z0 is the intermediate triplane
representation from the encoder. Let ϵθ(zt, t) be our denois-
ing network, a U-Net-based model KL-regularized similar
to [50]. We optimize our denoise network using the Latent
Diffusion loss introduced by [50], which is defined as:
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LLDM = EE(x),ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
(8)

4.3. Sampling images given a camera parameter

At inference, a noisy intermediate triplane representa-
tion is sampled by zt ∼ N (0, 1), and it is denoised iterative
by the diffusion model ϵ(zt, t) until it reaches z0. In or-
der to accelerate the sampling, we used a DDIM [57] at the
denoising process. The denoised z0 is fed into D to com-
pute the upscaled version of the triplane S. This triplane
S contains the 3D representation of the scene, from which
multiple images from different views can be computed. A
image xpi can be computed using ψ(S, pi) by giving the
target camera parameter pi.

4.4. Implementation details

For our experiments, three datasets were used FFHQ
[27], ShapeNet Cars [8] and a Triplane dataset. FFHQ
dataset contains images of faces taken from a diverse vari-
ety of camera parameters. To accelerate experimentation,
image resolution was down-sampled to 64x64. For this
dataset, camera parameters, intrinsic and extrinsic, were
computed using an off-the-shelf [13] model as described
at [6]. The ShapeNet car dataset is a 3D assets dataset for
cars. For each 3D asset, 50 views from different camera pa-
rameters were extracted with a resolution 128 × 128. Each
image is associated with its respective camera parameter.
The triplane dataset was created by using the Eg3D model
trained on the ShapeNet car dataset. We sampled 3000 tri-
plane representations of size 256× 256× 96.

This work was built on top of the official repository of
LDM 1. Stage one uses a VAE trained with standard KL-
regularization. The neural render is an MLP with two lay-
ers, the first with an input of 64 units and the second with
four units (RGB + Density). Stage 1 is optimized with the
loss in Equation 7. Stage 2 uses a latent diffusion model un-
conditional unless it is specified. The Stage 2 architecture
is a UNet with attention to resolutions 8, 4, and 2.

5. Experimental Results

In this section, we discuss our experiments. First, we
present single-view training, our first approach, and show
that DM cannot learn 3D priors from a single image by just
applying our methods. In section 5.2, we use a triplane
dataset constructed by the eg3D method to show that DM
can learn triplane generations. In section 5.3, we aim to
learn our model to encode 3D information without relying
on another method to get the triplane representation.

5.1. Experiment 1: Single View Training

This experiment aims to evaluate if the diffusion model
can learn a 3D-aware representation by using a single-view
image during training. In order to achieve this, we condition
the diffusion model to the camera parameters of the target
image. We relied on the prior from the diffusion model to
generate 3D information not visible in the single-view im-
age. We hypothesized that the DM could exploit the 3D
prior from images at the generation of triplane representa-
tions.

We trained our model with the FFHQ dataset using
64x64 image resolution. Each image has a camera param-
eter associated, which was computed using an off-the-shelf
model. This dataset does not contain multi-view images for
each identity; therefore, the loss function for stage 1 was
adapted as follows:

L =
∑
i

Lp(x
pi , ψ(f(xpi), pi)) (9)

Figure 8c and 8d show the results of our model. These
examples were generated by sampling a triplane from the
trained DM and generating images with a target camera pa-
rameter by using the same triplane. However, the diffusion
model was able to synthesize a photorealistic image of a
person but failed to learn 3D information. The triplane col-
lapses into a single plane or flat image.

We also sampled images using DDIM from the same
noise and changed the DM condition with their target cam-
era parameters. The idea is that the X0 should capture the
content or identity of the generation, and the camera param-
eters should be independent of the identity. Figure 8a and
8b show the images generated by this procedure. These im-
ages show that the model entangled both the identity and the
camera parameters; therefore, when generating, it produces
a new identity at each camera parameter.

With this experiment, we notice two critical issues:

• There is no training signal that enforces 3D informa-
tion at the triplane; therefore, the model produces flat
images.

• The diffusion model conditionated with camera pa-
rameters will entangle both content and camera param-
eters. Also, this approach will be slow to run.

5.2. Experiment 2: Triplane Training

After experiment 1, we want to investigate whether
learning triplane representations using DM was even pos-
sible. This experiment aims to evaluate DM trained on pre-
computed triplanes using encoding from other approaches.
We hypothesize that the DM can generate triplanes keeping
diversity in their reconstructions.

1https://github.com/CompVis/latent-diffusion
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Figure 7. Some generation results for shapeNet dataset [8], showing diversity in both types and texture in the generated cars

(a) Conditioned DM (left view) (b) Conditioned DM (right view)

(c) Fix Triplane (left view) (d) Fix Triplane (right view)

Figure 8. Examples from the single-view model with the condi-
tioning diffusion model.

Figure 9. Our diffusion model successfully fills the missing parts
of car models. A small cylinder is used to mask in the left, and the
right is masked with a thin long cuboid.

We created a dataset using the Eg3D model trained from
the ShapeNet car datasets. 3000 generations were sampled.
For each generation, we store a triplane with a dimension

of 256x256x96. For this experiment, the input and output
of stage 1 is the triplane with dimensions 256x256x96. The
encoder will reduce the triplane representation into a latent
triplane representation 32x32x24. This representation will
be fed into the decoder to upscale the triplane. No Neural
render model was used at stage 1 for this experiment. For
stage 2, the diffusion model is applied to the latent triplane
representation. This approach results in faster training due
to the reduction of size. At inference, an eg3D neural ren-
der model trained on the ShapeNet car dataset is used to
compute images from triplanes.

Examples of this model are shown in Figure 7. This fig-
ure shows that the model was able to generate a sample suc-
cessfully capturing diversity in their generation. These re-
sults demonstrate that diffusion models can learn triplane
representation and that applying the diffusion model to the
latent triplane representation is effective.

We also explore the task of triplane inpainting. For this,
we removed partial content from the triplane and fed it to
the network to generate the missing content. Figure 9 shows
that our model successfully reconstructed the missing con-
tent of the triplane.

From this experiment, we learn that the DM can learn
the 3D structure of the triplane. These methods showed that
they could generate 3D representation and shows diversity
in their generations. We showed that our model achieves 3D
information understanding and can fill in missing content.

5.3. Experiment 3: Multi-view training

Motivated by the previous experiment, we want to re-
move the requirement for a triplane representation dataset.
This experiment aims to train our model to generate triplane
representation. From experiment 1, we learned that learning
triplane from single-view training is challenging; therefore,
we decided to use multi-view training for this experiment.
The idea is to train an encoder to learn 3D consistent infor-
mation by enforcing the reconstruction of multiple views
from a single triplane.

To warm up the model, we trained the model to recon-
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Figure 10. Examples of the multi-view model. Each sample has an input camera parameter (left) and a target camera parameter (right),
which ground truth at the top. Model reconstructions are top with their corresponding camera parameters.

struct a single view as in experiment 1. During this warm-
up, the model will learn to encode visual features in the
triplane to reconstruct the input image. Later this model is
trained to reconstruct the two target views. The first is the
same as the input image, and the second is a different view
from the input image.

We trained a VAE with KL regularization on the
ShapeNet Car dataset during 32 epochs for the warmup and
2 epochs for fine-tuning. Figure 10 shows the reconstruc-
tion results for both the input and image from a different
view. This Figure shows that our model could learn 3D in-
formation at the triplane representation and render images
from challenging views. The Figure’s third example shows
that it can generate a view from the other side of the current
view. But this model is imperfect; the fourth example in
Figure 10 shows that the model fails to generate the entire
3D object.

This section showed that our model could learn 3D in-
formation with multi-view training. Although this model is
not perfect, we believe that this model can improve by fine-
tuning the model for more epochs. In the future, a diffusion
model can be trained on the intermediate triplane represen-
tation.

6. Discussions, Limitations, and future work

In experiment 5.1, we showed that the triplane could not
learn 3D information from a single view with our approach
and that conditioning our diffusion model to camera param-
eters leads to entangling both identity and camera parame-
ters at the denoising process. This proves the conditional-
discriminator in Eg3D [6] may not be applicable to all mod-
els or tasks, while our multi-view training forces explicit 3D
consistency and thus is more robust in maintaining 3D in-
formation.

Although our works show promising 3D results gener-
ated from the model, there are multiple paths to expand the

architecture. First and foremost, our current rendering res-
olution is 128x128, which is relatively small. Artifacts and
poor details arise if rendered with higher resolution. This
can be overcome by utilizing a 3D-aware super-resolution
block as in [6]. Our model also requires prior knowledge
other than normal training images, e.g. camera parameters.
Although there exist off-the-shelf models like [13] to create
pseudo-labels, or one can learn the pose distribution on the
fly [44], it is observed that the results can be unreliable [19].
The true independence of camera poses from camera pa-
rameters remains an open challenge.

Limited by time and computing resources, we are not
able to train the diffusion model with conditioning, such
as images or text. We also look forward to extending to
more domains or even to domains of general 3D objects.
In the future, we plan to work on these improvements to
better controlling of the 3D diffusion model with maximum
generality.

7. Conclusion

Diffusion models and Neural Rendering are topics of
growing interest in the computer vision community. In this
work, we leverage the generative power of diffusion models
to generate 3D representations. We proposed our approach
to learning a DM for generating 3D representations.

Our experimental results suggest that by using multi-
view training, our model can learn a triplane representation
that learns 3D information. We also showed that the dif-
fusion model can be trained on triplane representations to
increase sample diversity. This may enable a better training
strategy for 3D information, and thus lead to more control-
lable 3D synthesis and innovative methods for reconstruct-
ing 3D shapes and novel views.
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