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Fig. 1. We propose PartUV, a novel part-based UV unwrapping method for 3D meshes. Unlike traditional approaches that rely solely on local geometric prlors
and often produce over-fragmented charts, PartUV combines learned part priors with geometric cues to generate a small number of part-aligned charts. We
evaluate our method on four diverse datasets—PartObjaverseTiny (man-made) [Yang et al. 2024], Trellis (Al-generated) [Xiang et al. 2024], ABC (CAD) [Koch
et al. 2019], and Common Shapes [Jacobson and contributors 2023]—and show that it produces significantly less fragmented UV mappings while maintaining
low distortion on par with baseline methods. Leveraging part-aware charts also enables applications such as generating one atlas per part.
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UV unwrapping flattens 3D surfaces to 2D with minimal distortion, often
requiring the complex surface to be decomposed into multiple charts. Al-
though extensively studied, existing UV unwrapping methods frequently
struggle with Al-generated meshes, which are typically noisy, bumpy, and
poorly conditioned. These methods often produce highly fragmented charts
and suboptimal boundaries, introducing artifacts and hindering downstream
tasks. We introduce PartUV, a part-based UV unwrapping pipeline that
generates significantly fewer, part-aligned charts while maintaining low dis-
tortion. Built on top of a recent learning-based part decomposition method
PartField, PartUV combines high-level semantic part decomposition with
novel geometric heuristics in a top-down recursive framework. It ensures
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each chart’s distortion remains below a user-specified threshold while min-
imizing the total number of charts. The pipeline integrates and extends
parameterization and packing algorithms, incorporates dedicated handling
of non-manifold and degenerate meshes, and is extensively parallelized for ef-
ficiency. Evaluated across four diverse datasets—including man-made, CAD,
Al-generated, and Common Shapes—PartUV outperforms existing tools and
recent neural methods in chart count and seam length, achieves comparable
distortion, exhibits high success rates on challenging meshes, and enables
new applications like part-specific multi-tiles packing. Our project page is
at https://www.zhaoningwang.com/PartUV.

CCS Concepts: « Shape modeling — Shape analysis; « Mesh models —
Mesh geometry processing; Parametrization; Geometric algorithms.
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1 Introduction

UV unwrapping projects the 3D surface of a mesh onto a 2D plane,
assigning every 3D surface point a corresponding 2D UV coordinate.
This step is fundamental in 3D-content-creation pipelines because
it enables detailed surface information-such as material properties
(e.g., base-color, roughness, normal maps), along with auxiliary
maps like ambient occlusion and displacement—to be efficiently
stored and manipulated in 2D space.

A principal component of UV unwrapping is surface parame-
terization, which flattens the 3D surface while trying to preserve
geometric properties such as angles and areas. For meshes with
complex geometry, flattening the entire surface into a single 2D
chart introduces large distortion. Consequently, chart segmentation
(or seam cutting) is typically used to divide the mesh into multiple
charts along strategically placed seams, allowing each chart to be
flattened with reduced distortion. Finally, UV packing arranges the
resulting charts within the unit square (the UV atlas) to maximize
texture-space use.

Although UV unwrapping has been studied extensively, exist-
ing methods are typically tuned for well-behaved meshes, such as
those created by professional 3D artists. They often fail on more
complex, Al-generated meshes. Such meshes, typically extracted
from neural-field isosurfaces (e.g., via marching cubes [Lorensen
and Cline 1998]), tend to have bumpy surfaces, many small trian-
gles, and poor geometric quality (e.g., disconnected components
or holes). On such data, existing methods may time-out or return
extremely fragmented atlases in which a single chart holds only
one or a handful of triangles. This extreme fragmentation hampers
texture painting and editing, introduces texture-bleed and baking
or rendering artifacts at chart boundaries, and burdens downstream
applications with an unwieldy number of charts.

Some recent approaches mitigate fragmentation [Srinivasan et al.
2024; Zhang et al. 2024; Zhao et al. 2025] by representing the UV
mapping using a neural field and optimizing such a field for each 3D
shape from scratch. While these methods can effectively control the
number of charts generated, they typically run for more than thirty
minutes and still exhibit noticeable distortion. Other methods [Li
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et al. 2018; Poranne et al. 2017] jointly optimize seam length and
distortion but are likewise computationally expensive. Moreover,
some existing approaches like [Lévy et al. 2002; Sorkine et al. 2002;
Zhou et al. 2004] segment charts or identify seams using heuristics
based on local geometric properties, rather than leveraging the
concept of geometric or semantic parts. This can lead to unintuitive
or suboptimal chart boundaries that split semantically coherent
regions across multiple charts, further complicating downstream
tasks such as texture authoring, part-based editing, and semantic-
aware rendering.

In this paper, we introduce PartUV, a part-based UV unwrap-
ping pipeline for 3D meshes that generates UV mappings with a
small number of part-aligned charts while maintaining low distor-
tion, as well as robust and efficient processing—typically completed
within a few to several tens of seconds. PartUV builds on a recent
learning-based method, PartField [Liu et al. 2025], which produces
a hierarchical part tree for the input mesh. PartUV also proposes
several novel geometric heuristics that further decompose simple
local parts into charts that can be flattened with minimal distortion.
Combining high-level semantic decomposition from PartField with
fine-grained geometric cuts, PartUV employs a top-down recursive
search that minimizes chart count while keeping each chart’s distor-
tion below a user-specified threshold. PartUV uses established sur-
face parameterization algorithms (e.g., ABF++ [Sheffer et al. 2005])
for chart flattening and proven packing algorithms for optimal atlas
layout. To ensure high speed and robustness, the pipeline incorpo-
rates extensive parallelization and acceleration strategies, as well as
dedicated handling of non-manifold and degenerate cases.

By explicitly incorporating semantic priors, our approach yields
several key benefits. First, semantics improve decomposition by
reducing excessive reliance on local geometry, which often causes
over-segmentation and long runtimes. Second, semantic cues pre-
serve the coherence of object parts, preventing chart boundaries
from cutting through meaningful regions (e.g., across the flat surface
of a TV screen, as in Figure 7, or a human face), thereby facilitating
editing and rendering tasks. Third, semantic grouping naturally
supports better chart packing strategies, allowing related charts
to be organized together—either within a single atlas (top right
of Figure 1) or across multiple atlases (bottom right of Figure 1).
This enhances organizational clarity and simplifies the process of
locating and editing related charts. Finally, seams guided by seman-
tic boundaries tend to fall in perceptually unobtrusive locations,
improving the visual quality of textured models.

We evaluate PartUV on four datasets spanning man-made, Al-
generated, CAD models, and common 3D shapes (e.g., Stanford
Bunny, XYZ Dragon), and compare it against widely used UV un-
wrapping tools such as xatlas [Young 2019], Blender [Community
[n.d.]], and Open3D [Zhou et al. 2018a], as well as the recent
neural-based methods [Srinivasan et al. 2024]. As shown in Fig-
ure 1, our method decomposes input meshes into significantly fewer
charts—also resulting in shorter seam lengths—while maintaining
low angular and area distortion comparable to baseline methods. The
incorporation of explicit part priors not only helps the segmented
charts better align with part boundaries but also enables new appli-
cations, such as packing semantic-aligned parts into separate atlases.
Moreover, PartUV maintains a high success rate, handles a wide
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range of meshes (including large, complex, and non-manifold ones),
and processes each mesh quickly—typically within a few to several
tens of seconds.

2 Related Work
2.1 Mesh Parameterization

Disregarding mesh decomposition, mesh parameterization—the pro-
cess of mapping a 3D mesh to a 2D domain while minimizing various
distortion metrics (e.g., isometric, conformal, equiareal)—is a funda-
mental operation in UV unwrapping [Rabinovich et al. 2017; Sawh-
ney and Crane 2017; Schilller et al. 2013]. Many methods directly
optimize UV coordinates based on mesh connectivity by solving
linear or nonlinear systems under fixed or free boundary conditions.
These include barycentric embeddings like Tutte’s embedding [Tutte
1963], Laplacian eigen-decomposition techniques [Belkin and Niyogi
2003; Mullen et al. 2008; Taubin 1995], and distortion-minimization
methods [Ben-Chen et al. 2008; Desbrun et al. 2002; Hormann and
Greiner 2000; Ray and Lévy 2003; Sander et al. 2001; Su et al. 2016;
Yan et al. 2005; Yueh et al. 2019], such as Least Squares Conformal
Maps (LSCM) [Lévy et al. 2002]. Some adopt local/global strate-
gies that combine per-triangle transformations (e.g., rotations) with
global stitching [Alexa et al. 2023; Liu et al. 2008; Sorkine and Alexa
2007]. In contrast, Angle-Based Flattening (ABF) methods [Sheffer
and De Sturler 2000; Sheffer and de Sturler 2001; Sheffer et al. 2005;
Zayer et al. 2007] optimize triangle angles before converting them
into UVs, typically offering better angle preservation than LSCM
but at higher computational cost due to nonlinear solvers. In this
paper, we adopt ABF for base unfolding, integrating it with various
mesh decomposition strategies.

2.2 Mesh Segmentation for UV Unwrapping

Mesh segmentation is a key step in UV unwrapping, aiming to divide
a complex 3D mesh into simpler patches, or charts, each of which
can be flattened with minimal distortion. Existing approaches can be
broadly categorized into four main strategies. Top-down methods re-
cursively subdivide the mesh, often using spectral analysis [Liu and
Zhang 2007a,b; Pothen et al. 1990] or cuts along feature lines [Zhang
et al. 2005] and high-curvature regions [Lavoué et al. 2005]. Bottom-
up aggregation [Bhargava et al. 2025; Julius et al. 2005; Kalvin and
Taylor 1996; Lévy et al. 2002; Pulla et al. 2001; Sorkine et al. 2002;
Takahashi et al. 2011; Yamauchi et al. 2005; Zhou et al. 2004] grows
charts from small seeds (e.g., triangles), merging them based on
planarity or distortion bounds to maximize chart size under quality
constraints. Cut optimization [Carr et al. 2006; Gu et al. 2002; Li
et al. 2018; Pietroni et al. 2009; Poranne et al. 2017; Sander et al.
2003; Takahashi et al. 2011] focuses on identifying optimal seam
networks that minimize seam length, reduce flattening distortion, or
better suit specific parameterization goals. Clustering-based meth-
ods [Katz and Tal 2003; Roy 2023] group mesh elements based on
geometric similarity to form coherent segments. Commonly used
tools such as xatlas [Young 2019], Blender [Community [n.d.]], and
Open3D [Zhou et al. 2018a] primarily adopt bottom-up aggregation
strategies that rely solely on local geometric properties. In contrast,
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PartUV integrates high-level semantic part priors from a learning-
based module with novel local geometric decomposition strategies
via a top-down recursive tree search.

2.3 Learning-Based Parameterization and Segmentation

Representing UV mappings with neural networks has attracted
attention due to their differentiability and composability. Neural
Surface Maps [Morreale et al. 2021] pioneered this direction by
learning mappings across collections of surfaces. Several approaches
jointly optimize UV parameterization and 3D reconstruction from
multi-view images using cycle-consistency and distortion-based
losses [Das et al. 2022; Xiang et al. 2021]. Others, such as NUVO [Srini-
vasan et al. 2024], solve for parameterizations directly from sampled
3D points. More recent methods [Zhang et al. 2024; Zhao et al. 2025]
design neural networks to emulate physical operations, including
face cutting, UV deformation, and unwrapping. However, all the
aforementioned techniques typically rely on per-shape optimization,
making them computationally expensive and often requiring tens
of minutes per shape. A few feedforward models address specific
tasks more efficiently, such as intra-category texture transfer [Chen
et al. 2022] and low-distortion patch selection [Liu et al. 2023].

To enhance UV chart decomposition, we explore the integration
of semantic part priors. Traditional learning-based part segmen-
tation methods [Jiang et al. 2020; Qian et al. 2022; Vu et al. 2022]
are restricted to closed-set categories due to the limited scale of
part-annotated datasets [Mo et al. 2019; Yi et al. 2016]. Recent ap-
proaches [Guo et al. 2024; He et al. 2024; Xu et al. 2023, 2024; Yang
et al. 2023; Yin et al. 2024; Zhou et al. 2018a] lifting priors from 2D
vision to 3D models [Kirillov et al. 2023; Li et al. 2022] for open-
world 3D part segmentation but rely on per-shape optimization,
leading to slow runtimes and noise sensitivity. In contrast, a re-
cent method, PartField [Liu et al. 2025], introduces a feedforward
model that learns part-aware feature fields for fast, hierarchical 3D
part decomposition. While semantic priors intuitively benefit UV
unwrapping, naive integration can yield suboptimal results. Par-
tUV addresses this with a novel top-down strategy that interleaves
semantic segmentation and geometric flattening.

3  Method
3.1 Overview

For a 3D mesh M = (V, F), PartUV decomposes the mesh faces into
a small collection of disjoint charts:
K

F=Uck, with ¢;NCj=2 (i #)), 1)
k=1
where each chart Cy. is a connected subset of faces. We utilize an
Angle-Based Flattening algorithm(ABF++), to flatten each chart onto
a 2D plane, yielding mappings:
¢ : G — R, 2
so that each vertex v; € V receives a corresponding 2D UV coordi-
nate u; = ¢ (v;) € R?, determined by the chart it belongs.

The primary challenge lies in decomposing the mesh into charts
{Cx}, a task essentially equivalent to identifying optimal seams for
mesh segmentation. Many state-of-the-art methods, such as xat-
las and Blender’s Smart UV, rely on geometric heuristics—such as
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Fig. 2. Pipeline of PartUV. Given a mesh M, we first leverage the learning-based method PartField to predict a part-aware feature field. By applying a
clustering algorithm to this field, we obtain a hierarchical part tree 7 for the input mesh M. We then recursively traverse the part tree 7 starting from the
root node. For each visited node P, we apply two novel geometry-based strategies to segment the corresponding part mesh into multiple sets of charts 6.
Each chart in the set is then flattened using the ABF algorithm [Sheffer et al. 2005], and its distortion is evaluated. If the distortion exceeds a user-specified
threshold 7, we recursively traverse the left and right children of the part tree 7. Otherwise, we adopt the segmented charts and their corresponding UV

mappings for the part mesh.

bottom-up greedy chart expansion based on face normals or distor-
tion metrics—to generate these charts. However, these strategies
typically produce overly fragmented charts and unintuitive or sub-
optimal boundaries, often splitting semantically coherent regions
across multiple charts.

In contrast, PartUV adopts a coarse-to-fine, two-stage strategy for
mesh decomposition. At a high level, it employs a recent learning-
based method called PartField (introduced in Section 3.2) to parti-
tion mesh faces into semantically coherent parts: F = [JM_ P,,,
where each part Py exhibits relatively simple geometry—for instance,
cylindrical limbs, spherical toes. Subsequently, we introduce two
geometry-based heuristics (detailed in Section 3.4) to further seg-

ment each part into a small set of charts: P, = Uf:[”i Cp,n, ensuring

each resulting chart Cp,, can be flattened onto a 2D plane with
minimal distortion.

To accomplish this, PartUV employs a top-down recursive de-
composition search (detailed in Section 3.3) that minimizes the total
number of generated charts while ensuring the distortion for each
chart remains below a user-specified threshold 7. Since exhaustive
decomposition searches can incur substantial computational over-
head, we introduce acceleration and parallelization techniques for
efficiency. To ensure a complete and robust pipeline, Section 3.5 also
describes additional preprocessing and postprocessing procedures,
including handling non-manifold and multi-component meshes, as
well as performing UV packing.

3.2 Preliminary: PartField

PartField [Liu et al. 2025] trains a feed-forward neural network that
takes a 3D mesh as input and predicts a continuous, part-based fea-
ture field encoded as a triplane. By leveraging extensive contrastive
learning on part-labeled 3D data and large-scale unlabeled 3D data
with 2D pseudo part labels, PartField learns general hierarchical
concepts of semantic and geometric parts. For any 3D point, we
can obtain its high-dimensional part feature by interpolating the
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triplane representation. Points whose features are similar—as mea-
sured by cosine similarity—are therefore more likely to belong to
the same part.

3.3 Top-Down Recursive Tree Search

After obtaining the hierarchical part-based feature field using Part-
Field, we first compute a representative part feature for each trian-
gular face by uniformly sampling s 3D points within the face and
averaging their corresponding point features. Next, we construct a
hierarchical part tree 7" using agglomerative clustering [Johnson
1967] on these face features. In this hierarchical tree structure, the
leaf nodes represent individual triangular faces, and the root node
encompasses the entire mesh.

A straightforward approach to mesh decomposition might in-
volve using PartField to directly generate a fixed number of parts
and attempting to flatten each to 2D individually. Alternatively,
one could adaptively traverse 7~ from the root downward, checking
whether each node’s corresponding geometry can be flattened into a
2D chart with minimal distortion. However, we observe that relying
solely on parts generated by PartField often leads to suboptimal
results. This limitation arises because PartField primarily focuses
on semantic or coarse geometric partitioning and is less effective
for finer-scale, UV-related decompositions—such as accurately seg-
menting cylindrical or spherical regions into charts that minimize
distortion. To address this challenge, PartUV leverages PartField
primarily for high-level semantic decomposition into geometrically
simpler subparts and employs two geometry-based heuristics (elabo-
rated in Section 3.4) to further divide these semantically meaningful
parts into smaller charts amenable to low-distortion flattening. The
search algorithm interleaves these two strategies.

Formally, PartUV employs a top-down recursive decomposition
search—detailed in Algorithm 1—to optimally balance the chart
count against distortion constraints. Given a subtree node # (ini-
tially the root node of the tree 77), a distortion threshold 7, and a



Algorithm 1 PARTTREESEARCH

Require: P (aPartField subtree node), distortion threshold 7, chart
budget B

Ensure: A UVChartSet € = {C1,Cs, - -+ ,Cr} for P’s mesh, whose
charts C; have distortion < 7 and whose total chart count k is
< B; return L if no such set exists.

1: procedure PARTTREESEARCH(P, 7, B)

2 if B < 1 then > budget exhausted
3 return L

4 end if

5 H; < GENCANDIDATESH1(P.mesh, 10) > Heuristicl
6 forall € € H; do > € is one of candidate UV ChartSet
7 PARAMETERIZEABF(®) » flatten and compute distortion
8 end for

9 if mingcg, €.dist > 7 then » no admissible H1 candidate
10: L « PARTTREESEARCH(P.left_child, r,c0)

11 R « PARTTREESEARCH(P.right_child, t,00)

12: return L & R > merge chart sets from the subtrees
13: else

14: H, «— {GENCANDIDATEH2(P.mesh,7)} » Heuristic2
15: PARAMETERIZEABF(H,[0])

16: S « {% EHIUH, | Gdist<t A NoOVERLAP(%)}
17: Bhest < argminge s €.count

18: > Recurse to determine whether a better solution exists
19: B’ « min(B, Gpest.count — 1)
20: L « PARTTREESEARCH(P.left,7,B’ — 1)
21: R < PARTTREESEARCH(P.right, r, B’ — L.count)
22: Geomb «— LB R
23: is_valid «— Gcomp.dist <7 A NOOVERLAP(Gcomp)
24: if Geomp.count < Ghest.count A is_valid then
25: Ghest < Gcomb
26: end if
27: return Ghest
28: end if

29: end procedure

chart budget B (initially set to o), the algorithm searches for a valid
chart decomposition of £’s mesh that satisfies three key conditions:
each chart has a distortion of at most 7, no charts overlap in 2D,
and the total number of charts does not exceed B. If no feasible
decomposition exists, the algorithm returns failure (.L).

Specifically, the algorithm begins by generating candidate chart
decompositions for node $’s mesh using a primary geometric heuris-
tic (Heuristicl). Each candidate chart set € = {C;}, consisting of
up to t charts, is flattened using Angle-Based Flattening (ABF), and
its distortion is evaluated. If none of the candidate decompositions
with up to t charts from Heuristic1 satisfy the distortion constraint
(i-e., Omin > 7), the algorithm utilizes the PartField tree to divide the
mesh and recursively searches both the left and right child subtrees
without budget constraints, then merges their respective optimal
chart sets.

Conversely, if an admissible candidate decomposition is found
through Heuristic1, we further refine it using a secondary heuristic
(Heuristic2) designed to potentially yield fewer charts. Among these
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candidates, we select the best solution Gpest with the minimal chart
count that satisfies the distortion and overlap constraints.

Before accepting this solution, the algorithm performs a final
check by recursively exploring the left and right child nodes of the
PartField subtree, using a reduced chart budget (B’), which is derived
from the best candidate’s chart count minus one. If the combined
solution from this subtree search yields a valid and superior de-
composition (i.e., fewer charts than G.es), it replaces the previously
identified best solution. The chart budget B prevents the search from
going too deep. As the search progresses, B tightens, and recursion
stops when candidates exceed it. In practice, the search rarely goes
very deep.

By strategically interleaving hierarchical semantic guidance from
PartField with fine-grained geometric heuristics and systematic
recursive exploration, our proposed decomposition search achieves
semantically coherent, distortion-bounded, and notably compact
mesh parameterizations—characterized by a small number of charts.

3.4 Geometry-Based Part Decomposition

In this section, we introduce two heuristics, Normal and Merge, to
further decompose a part P, generated by PartField and exhibiting
simple geometry. The goal is to divide P,, into multiple charts,
denoted as P,,, = UQZ’{ Cm.n, such that each chart can be flattened
to 2D with low distortion.

The first heuristic, referred to as Normal (line 5 in Algorithm 1), is
based on face normals. We apply an agglomerative clustering algo-
rithm [Johnson 1967] to the face normals of P,,’s mesh, partitioning
its triangle faces into charts, where each chart is composed of con-
nected faces with similar normals. This clustering is performed once
for P, producing t candidate decompositions with 1 to ¢ charts (we
use t = 10 in our experiments). For each candidate decomposition,
we apply the Angle-Based Flattening (ABF) algorithm to flatten the
charts and evaluate distortion. Since ABF aims to preserve angles,
we quantify distortion using an area stretch metric, defined as:

distortion (%) = 2‘?%‘ (|é| ];C max (stretch(f), stretclh(f))) , (3)

where C denotes a single chart composed of multiple connected
faces, and € denotes the set of all charts in the decomposition. The

stretch of a triangle face f is computed as:

_ area2D(f) 1 area2D (")
stretch(f) = area3D(f) / ( icl f;c area3D(f)) ) 4)

Note that both PartField and the Normal heuristic employ the ag-
glomerative clustering algorithm to group faces into parts or charts.
The key difference lies in the features used: PartField utilizes learned
high-level part features, while heuristic Normal relies on low-level
geometric face normals. These two strategies are thus consistent in
spirit and complementary in practice.

The Normal heuristic is simple, fast, and often yields satisfactory
results. However, we also propose a second, more computationally
expensive heuristic, called Merge (line 14 in Algorithm 1), which
may produce decompositions with fewer charts. Given a part Pp,,
the Merge heuristic begins by computing its oriented bounding
box (OBB). It then assigns each triangle face a label from 1 to 6,
corresponding to the OBB face normal with which the triangle’s
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normal is most closely aligned. Using both face connectivity and
these labels, we segment the faces into multiple connected compo-
nents. These components are then sorted by size (small to large), and
we iteratively attempt to merge each component with its adjacent
neighbors, starting from the one with the longest shared edges. For
each merge attempt, we temporarily merge two components and
apply ABF to flatten the combined chart. The merge is accepted
if the resulting chart satisfies the distortion threshold and is free
of overlaps. This merging process continues until no further valid
merges can be made, after which the final chart set is returned. Since
the Merge heuristic often begins with many small components and
performs multiple ABF calls during its iterative merging process, it
is significantly more expensive than the Normal heuristic. However,
it may yield better decompositions with fewer charts. Therefore, we
only invoke the Merge heuristic when the Normal heuristic returns
a valid (admissible) decomposition.

3.5 Runtime Optimization and Pre- and Post-processing

Runtime Optimization To ensure efficiency despite the compu-
tational cost of recursive decomposition and repeated ABF invo-
cations, we adopt two key strategies during the decomposition
process. First, we parallelize all recursive calls to the left and right
subtrees during the top-down search, allowing the algorithm to ex-
ploit multi-core processing and significantly accelerate the overall
decomposition. Second, to avoid the high cost of repeatedly invok-
ing Angle-Based Flattening (ABF) on dense meshes, we employ a
GPU-accelerated mesh simplification algorithm [Oh et al. 2025] to
generate low-resolution approximations of candidate charts. During
simplification, the chart boundary is kept fixed to preserve the geo-
metric structure relevant to UV mapping. These simplified charts
are used to estimate distortion metrics quickly (i.e., surrogate dis-
tortion) during intermediate evaluations. Once the final chart set is
determined, ABF is applied to the original high-resolution mesh to
produce accurate UV coordinates and distortion measurements.
Non-Manifold and Multi-Component Meshes Since the ABF
algorithm assumes each input chart is a manifold and connected sur-
face, additional processing is required when handling non-manifold
or multi-component meshes. For non-manifold meshes, we detect all
non-manifold edges—i.e., edges shared by more than two faces—and
resolve them by duplicating the shared vertices and splitting each
such edge into N — 1 distinct edges, where N is the number of inci-
dent faces, thereby converting the structure into a manifold form
suitable for flattening. For meshes containing multiple connected
components, we initially proceed with the proposed PartField-guided
hierarchical decomposition. If a part mesh consists of disconnected
components, we skip heuristic-based decomposition at that level
and instead recursively explore the left and right subtrees of the Part-
Field hierarchy. However, if PartField fails to further segment the
multiple components after reaching a predefined recursion depth,
we fall back to applying the geometric heuristics and ABF flattening
to each connected component at that level individually, in order to
avoid excessively fragmented decomposition.

UV Packing While our primary focus is on decomposing 3D meshes
into charts and generating corresponding low-distortion 2D parame-
terizations, our method is fully compatible with a variety of existing
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UV packing algorithms. A distinguishing feature of our approach
is that chart decompositions are grouped based on semantically
meaningful parts, enabling more structured and application-aware
packing strategies. For example, charts belonging to the same part
can be grouped together during packing. Alternatively, part groups
can be packed into an arbitrary number of UV atlas squares (e.g.,
multiple [0, 1]% spaces) with a semantically balanced distribution
across atlases. This semantic hierarchy not only improves organi-
zational clarity but also benefits downstream applications such as
texture painting or editing, where charts belonging to the same part
remain spatially close and are easier to manipulate collectively.

4 Experiments
4.1 Implementation Details and Evaluation Setup

Implementation Details. We train PartField [Liu et al. 2025] on
Objaverse [Deitke et al. 2022] using 8 NVIDIA H100 GPUs for 15
days. During inference, we sample 10 points per face and aver-
age their features for face clustering and part tree construction.
The core pipeline of PartUV is implemented in C++17, and we use
UVPackmaster [Lukasz Czyz 2025] for final group-based UV pack-
ing. A distortion threshold of 1.25 is used in all experiments. For
ABF++, we run 5 iterations per call, and follow Blender to set the
gradient early-stop condition. Mesh simplification is controlled by a
curvature-related threshold of 1e-4 and a maximum iteration count
of 1,000. All parameters are fixed across experiments. All meth-
ods are evaluated on a cluster node with a 96-core Intel® Xeon®
Platinum 8468 CPU and an NVIDIA H100 GPU.

Evaluation Datasets. To comprehensively evaluate the approaches
across diverse mesh sources, qualities, and styles, we use four datasets:
(a) Common Shapes [Jacobson 2013], a GitHub repository of 24
widely used models in graphics (e.g., Bimba, Igea, Stanford Bunny)
with provided processed .obj files; (b) PartObjaverseTiny [Yang et al.
2024], a 200-shape subset of Objaverse [Deitke et al. 2022] featur-
ing high-quality, man-made meshes with multiple components and
smooth surfaces; (c) ABC [Koch et al. 2019], a CAD dataset of me-
chanical models combining sharp and smooth features—we use
the first 100 meshes from its initial batch; and (d) Trellis [Xiang
et al. 2024], which includes 114 Al-generated meshes from a recent
3D diffusion-based generative model. These meshes are typically
noisy and geometrically low-quality, posing greater challenges than
human-made counterparts.

Evaluation Metrics. We evaluate the quality of the generated UV
maps from four perspectives: (1) Number of Charts: For each shape,
we count the number of charts and report both the average and
median values across the dataset. (2) Seam Length: We compute the
seam length by summing the lengths of all chart boundary edges,
with UV coordinates normalized to a [0, 1] grid. The median value
is reported across the dataset. (3) Angular (Conformal) Distortion:
We compute the cosine between the tangent and bitangent vectors
of each face. The distortion for a shape is defined as one minus the
average cosine across all faces [Srinivasan et al. 2024]. We report the
average distortion across the dataset. (4) Area (Equiareal) Distortion:
We compute both area distortion and overall area distortion. Area
distortion is defined as in Equation 3, based on the chart with the
highest distortion in each shape. Overall area distortion is computed
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Fig. 3. Quantitative comparison between Blender [Community [n. d.]], xatlas [Young 2019], and PartUV. Unlike Blender and xatlas, which rely
solely on local geometric properties for UV unwrapping, PartUV integrates high-level semantic priors with low-level geometric heuristics, enabling part-based
chart decomposition. As a result, it produces significantly fewer charts, with boundaries that better align with semantic parts.

by aggregating all triangles across all charts, calculating individual
distortions, and averaging them. For both metrics, we first compute
per-shape values and then average them across the dataset. All
triangle-level distortion values are clipped to a maximum of 10.
Notably, overall area distortion may be smoothed by the number of
faces, while area distortion more effectively highlights problematic
regions in the UV maps. We did not report stretch L, and Lo, [Sander
et al. 2001] since they are per-triangle metrics that can diverge to
infinity when triangles flip or have near-zero area—issues that are
common in baselines such as xatlas, making direct comparison less
meaningful.

4.2 Comparison with Baselines

Baselines. We compare PartUV with commonly used tools—Blender’s
Smart UV Project [Community [n.d.]], xatlas [Young 2019], and
Open3D—as well as optimization-based methods, including Nuvo [Srini-
vasan et al. 2024] and OptCuts [Li et al. 2018].

Blender, xatlas, and Open3D decompose meshes into charts us-
ing bottom-up strategies guided by local geometric priors. Blender
clusters triangles based on mesh normals and flattens each chart
using simple planar projection. xatlas employs a greedy algorithm
that balances geometric deviation, UV distortion, and seam cost,
followed by Least Squares Conformal Maps (LSCM) [Lévy et al.
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Fig. 5. Nuvo and OptCuts incur significantly longer optimisation times for
each shape. Nuvo’s results also exhibit large distortion.

2002] for flattening. Open3D builds on Microsoft’s UVAtlas [Corpo-
ration 2023; Sander et al. 2002; Zhou et al. 2004], which uses region
growing guided by the isometric stretch metric and flattens charts
with LSCM. Among optimization-based methods, Nuvo [Srinivasan
et al. 2024] learns a continuous UV mapping via a neural field by
minimizing distortion losses with various regularizations. OptCuts
jointly optimizes surface cuts and distortion under a global bijectiv-
ity constraint. Both methods require significantly longer runtimes
per mesh.

Results. As shown in Table 1, Blender and xatlas often produce
over-fragmented charts, whereas PartUV generates UV maps with
significantly fewer charts. For instance, on the Common Shapes
dataset, PartUV uses only 1/31 as many charts as Blender. Conse-
quently, it also results in shorter seam lengths. PartUV maintains
low levels of both angular and area distortion, while xatlas may
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Table 1. Quantitative comparison between Blender [Community
[n.d.]], xatlas [Young 2019], and PartUV.

success average median median overall
dataset method| rate #of #of seam angular  area area  time
(%) charts | charts | length | distort. T distort. | distort. | (s)

Blender| 100.0 13603 3325 44.7 0.906 1172 1102 03

Common Shapes | o | 1000 9748 3010 429 0987 1885 1504 77.9

@ashapes) | "0 | 1000 436 150 168 0982 1404  L131 540
Trellis Blender| 100.0 33529 19570 945 0921 1252 1107 1.1

(114 shapes) | ¥20a5 | 1000 15616 8950 912 0984 2357 1093 131
P ours | 1000 5388 2215 559 0961 1300 1135 419

ABC Blender| 1000 3053 780 250 0992 1122 1067 0.7

xatlas | 100.0  249.6 56.0 26.5 1.000 1.192 1030 31.0

(100shapes) | " | 1000 740 180 198 0999 1175 1058 43.1

Part Blender| 100.0 1509.2 6475 70.2 0.925 1.325 1115 0.2
Objaverse xatlas | 100.0 1142.1 4915 67.0 0.982 1.728 1.286 4.4
Tiny (200 shapes)| ours 1000 463.3 155.5 39.3 0.954 1.271 1112 21.0

Table 2. Quantitative comparison between Open3d [Zhou et al.
2018b] and PartUV. Note that Open3D has a limited success rate, and
the reported numbers are averaged over the easier cases it successfully
completes. Despite this, Open3D still exhibits large distortion.

success average overall average median median
rate  angular  area area #of #of seam time
(%)  distort. T distort. | distort. | charts | charts | length | (s)

dataset method

Open3d
ours

79.2 0.852 1.509 1191 19.8 12.0 11.8  19.8

h
Common Shapes 1000 0987 1281 1128 244 120 151 523

Trelli Open3d| 395 0859 1931 1264 798 400 259 241
rellis ours | 100.0 0984 1308 1144 979 510 274 237
ABC Open3d| 830 0878 1459 1162 150 8.0 93 176
ours | 1000 0994 1171 1062 350 150 186 396

PartObjaverse |Open3d| 52.5 0.799 2772 1.295 161.5 80.0 256  10.0
Tiny ours | 1000 0.957 1254 1117 2271 910  30.6 140

Table 3. Quantitative comparison between Nuvo [Srinivasan et al.
2024] and PartUV.

success  average overall  average
dataset method | rate angular area area #of time
(%) distortion T distortion | distortion | charts |  (s)
nuvo 100.0 0.802 2.722 1.940 17.0 2908.8
Common Shapes | ours | 1000 0.987 1.281 1.128 244 523

exhibit large area distortion on certain challenging shapes. Despite
utilizing a more exhaustive decomposition search and a compu-
tationally expensive ABF flattening algorithm to achieve higher
quality, PartUV maintains a runtime comparable to xatlas, typically
completing in tens of seconds. See Figure 3 for a qualitative compar-
ison, where PartUV leverages semantic part information to produce
chart boundaries that align more closely with object semantics.

We report the comparison results with Open3D separately in Ta-
ble 2 due to its failure to complete some shapes within a reasonable
time. For example, on the challenging Trellis dataset, it achieves a
success rate of only 39.5%. In Table 2, we report the average perfor-
mance only over the easy cases that Open3D successfully processes.
For these cases, Open3D achieves a similar number of charts and
seam lengths compared to our method. However, this comes at the
cost of significant distortion. For instance, while Blender, xatlas,
and PartUV all achieve angular distortion scores mostly above 0.95
across all datasets, Open3D consistently falls below 0.9 and even 0.8
in some cases. A similar phenomenon is observed for area distortion.
Please refer to Figure 4 and Figure 6 for qualitative examples, where
Open3D produces large distortions, rendering the UV mappings less
suitable for practical applications.



xatlas

Fig. 6. Texture-map comparison among Blender, xatlas, and our PartUV.

Compared to Nuvo and OptCuts, we observe that although both
methods effectively reduce the number of charts, they typically re-
quire significantly longer optimization times—often exceeding 30
minutes or even several hours. Moreover, Nuvo leads to substan-
tially higher distortion, as shown in Table 3 and Figure 5. While
OptCuts achieves low distortion, its success rate is limited: it pro-
duces outputs for only 9 out of 24 shapes in the Common Shapes
dataset. Additionally, neither method incorporates the concept of
semantic parts during optimization.

See supplementary material for additional qualitative examples
UV efficiency comparisons, and analysis of Open3D results.

4.3 Applications and Analysis

In this section, we demonstrate the benefits of using our PartUV:

Texture Editing and Replacement. Since our UV mappings are
less fragmented, texture maps can be more effectively edited or
modified in 2D space. In Figure 7, we show that our UV maps en-
able clean placement of conference logos, whereas the UV maps
generated by Blender or xatlas fail to do so due to their overly frag-
mented layouts. Figure 8 further showcases an application where
the texture is replaced with various tiling patterns. Because xatlas
and Blender often produce numerous small charts containing only
a few triangles, noticeable artifacts appear on the mesh surface. In
contrast, our method preserves significantly better visual quality.

PartUV: Part-Based UV Unwrapping of 3D Meshes « 9
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Fig. 7. Unlike our baselines, which generate over-fragmented UV maps that
hinder 2D texture editing, PartUV produces significantly fewer charts with
part-aligned boundaries, enabling more effective 2D operations.

Blender

Fig. 8. Our UV map enables easy texture replacement, whereas xatlas /
Blender maps cause severe artefacts due to over-segmentation.

Texture Compression. UV maps always require padding between
charts. When the UV layout is over-segmented, more padding is
needed, which increases the risk of color bleeding. In Figure 10,
we demonstrate that reducing the UV map resolution from 1024 to
128—a common setting in mobile games—results in noticeable color
bleeding for textures generated by xatlas and Blender. In contrast,
PartUV is free from such issues.

Multi-Atlas Wrapping. As shown in Figure 1 and Figure 9, Par-
tUV supports part-based UV packing. Given the desired number of
atlases, it can automatically extract semantic-meaningful parts and
pack across separate atlases, facilitating downstream applications
such as texture editing.

Adaptive Threshold Adjustment. PartUV allows users to specify
a distortion threshold 7, enabling adaptive control over the trade-off
between the number of charts and the distortion in the generated
UV maps, as shown in Figure 11.

4.4 Ablation Studies

PartField. We integrate semantic part priors with geometric heuris-
tics through an adaptive recursive tree search. A naive way to com-
bine them is to first use PartField to decompose the shape into a
fixed set of 20 parts, and then further decompose each part using
the two heuristics. As shown in Table 4(a), this naive combination
results in high distortion, as some parts may remain too complex to

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 9. Our part-based UV unwrapping can pack all charts into a single atlas or multiple atlases by semantic part, aiding tasks such as 2-D editing.
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Fig. 10. xatlas and Blender generate over-fragmented UV maps that may
introduce color bleeding, especially with low-resolution texture maps (e.g.,
in mobile games). In contrast, our results are free from such issues.

Table 4. Ablation study conducted on the Trellis dataset.

average median area angular seam

id version # charts | # charts | distort.| distort.T length | time

a fixed 20 parts 397.02 223.00 2.18  0.9687 66.42 207.75
b |replace PF feat. with face normal 57443  259.50 1.28  0.9708  64.46 83.67
c no merge 763.74 270.50 1.30  0.9607 62.75 38.00
d no recursion 928.23 237.00 1.31  0.9630 59.17 40.66
e no distortion surrogate 575.31 216.50 124  0.9632 57.88 61.48
f full 538.81 221.50 1.30  0.9609 57.92 41.88

be flattened with low distortion. We also experimented with replac-
ing the PartField features with face normals and then applying the
original recursive tree search. As shown in Table 4(b), this variant
doubles the runtime, increases the number of charts, and produces
chart boundaries that no longer align with semantic parts.
Merge Heuristic. We propose an innovative geometry-based heuris-
tic, Merge, for chart decomposition. When this heuristic is removed
and only the Normal heuristic is used (Table 4(c)), we observe an
increase in the number of charts.
Recursion. As shown in Alg. 1, Line 18, we do not immediately
return the first solution found but continue the search to find poten-
tially better solutions. When this strategy is removed (Table 4(d)),
we observe a significant increase in the number of charts.
Distortion Surrogate. To accelerate the search, we first simplify
the mesh during intermediate iterations and then apply the ABF
algorithm to the simplified mesh to compute an approximate dis-
tortion, which helps guide the search more efficiently. When this
strategy is removed (Table 4(e)), we observe an increase in runtime.
We show more ablations and visualizations, including compar-
isons of different flattening algorithms, in the Appendix.

4.5 95th Percentile Distortion Metrics

To evaluate worst-case behavior, we additionally report 95th-percentile

distortion metrics and compare them with baseline methods on four
datasets. As shown in Table 5, we consider two metrics: distortion
95th-shape, defined as the 95th-percentile area distortion across all
shapes in a dataset, and distortion 95th-chart, which first computes
the 95th-percentile area distortion across all charts within a shape
and then averages the results over all shapes in the dataset. As the
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Fig. 11. PartUV lets users set a distortion threshold, flexibly controlling
both distortion and chart count.
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Table 5. 95th-percentile area distortion metrics across four datasets.

Dataset ‘ Metric ‘ Blender xatlas ours

ABC distortion 95th-shape | 1.175 1.726 1.273
distortion 95th-chart | 1.093 1.041 1.133

Common Shapes distortion 95th-shape | 1.885 1.504 1.404
P distortion 95th-chart | 1.139 1131 1169

. . distortion 95th-shape | 1.728 1.286 1.271
PartObjaverseTiny ‘ distortion 95th-chart | 1132 1079 1116
Trellis distortion 95th-shape | 1.319 4701 1.442
distortion 95th-chart | 1.120 1.099 1.220

table shows, our method consistently yields low 95th-percentile
distortion values, with a maximum of 1.442, whereas baseline meth-
ods often produce much higher distortions (e.g., 4.701, 1.885, 1.728).
These results demonstrate that our approach achieves more robust
and stable performance under challenging cases.

5 Discussion on Failure Cases

Our method struggles with poor input mesh topology. For example,
it cannot handle 3D meshes containing self-intersections. In such
cases, the algorithm may recurse deeply in an attempt to resolve
the intersections, which can lead to fragmented charts. Moreover,
when input meshes are extremely fragmented—for instance, those
with over 1000 components—the unwrapping results also become
highly fragmented. In these cases, remeshing may be required before
UV unwrapping. However, our method performs well on general
meshes with few components and does not require meshes to be
watertight or manifold.

6 Conclusion

In this paper, we propose PartUV, a novel framework for UV un-
wrapping that strategically integrates semantic part priors from
learning-based methods with two novel geometric heuristics. Par-
tUV outperforms existing approaches by generating significantly
fewer charts, low distortion, and chart boundaries that align with
semantic parts. We demonstrate the advantages of this pipeline
through several applications.
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Fig. 12. A demonstration of effects from Open3D’s higher distortion results,
creating curved (from angular distortion) and uneven (from area distortion)
stripes.

Table 6. Efficiency (T) comparison across methods

ours Blender Open3D xatlas

Part-Objaverse-Tiny  0.606 0.514 0.332  0.666

Trellis 0.571 0.430 0.242  0.619
ABC 0.568 0.554 0.490  0.646
Common Shapes 0.575 0.460 0.461  0.561

A1 Additional Results and Comparisons
A1.1  More Qualitative Results

In the supplementary material, we provide an HTML file contain-
ing more qualitative and quantitative comparisons between our
method and our baselines. The examples are gathered across the
four datasets we used in the main paper. The metrics are computed
and reported for individual shapes.

A12 Efficiency

As we create the UV map with regard to semantic features and
groups, it may raise doubts regarding the final efficiency of the
resulting UV maps. In Table 6, we show the comparison of the
average efficiency of valid results between our method and the
baselines. In our experiments, we always group the charts from
the same parts when packing, and we use UVPackMaster [Lukasz
Czyz 2025] to get the final packed UV map. We set the "heuristic
search" time to 3 seconds for UVPackMaster, while most meshes
finish within microseconds. We define efficiency as the total area of
valid 2D faces within the normalized 0-1 UV space. It can be seen
that our method does not hurt the overall efficiency, and it remains
competitive compared to our baseline methods.

A1.3  Analysis and Visualization of Open3D Results

In our experiments, particularly on the more challenging meshes,
Open3D frequently crashed or exceeded the allotted time budget.

PartUV: Part-Based UV Unwrapping of 3D Meshes « 11

PartField Normal PartField Normal
Feature Feature Feature Feature

\ \

Visual < ;.
Reference 'l

Q)

{10 charts [B¥ogm 26 charts | e )

Fig. 13. When using the face normals as agglomerative features for top-
down tree construction, the pipeline generates messier results with no
semantic alignment.

We designate a shape as timed-out when its runtime surpasses 30
seconds plus three times the longest runtime among other methods
on the current shape.

Even for the shapes where Open3D successfully produces a UV
map, the results still exhibit notable shortcomings. At first glance,
Open3D seemingly generates results with chart numbers similar to
our method, albeit with slightly higher distortion. However, such dif-
ferences in distortion can significantly affect downstream tasks. In
Fig. 12, we show one example from the ABC dataset, which Open3D
creates a layout with a similar chart number with ours. However,
with 0.2 difference in area distortion and 0.1 difference in angular
distortion, the deformation of the texture is clearly noticeable. In
particular, when using a striped texture, angular distortion leads
to curved lines (bottom half of highlighted region), while area dis-
tortion causes uneven width (top half of highlighted region)—both
prominently visible in the red-marked rectangle of the figure, not
to mention the seams that disregard underlying geometric features.
In contrast, our results exhibit minimal distortion, maintain the
regularity of the shape, and feature seams that largely respect the
underlying geometric structure.

A2 Additional Ablation Results
A2.1 Replacing PartField feature with Face Normals

In our main pipeline, we create a top-down tree of faces with ag-
glomerative clustering of PartField-predicted features. A simpler
alternative would be replacing such features with face normals. In
Fig. 13, we provide some visual examples of meshes using normal as
Agglomerative features versus using the PartField-predicted ones.
It can be seen that using normal is substantially prone to producing
curly shapes, like the cherry on the left. Moreover, though being
able to predict a similar number of charts under the same heuristic
settings, using normal as the agglomerative features leads to way
less organized and neat UV layouts, as exemplified on the right of
the figure.
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Fig. 14. Visual comparison of with and without the merge heuristics.

Table 7. Comparison between using ABF++ (Ours) and LSCM (Ours-
LSCM) in our pipeline.

average median area seam  time
# charts | # charts | distort. | length | (s)

65.48 58.61

Ours-LSCM | 1154.12 363.00 1.27
57.92 41.88

Ours 538.81 221.50 1.30

A2.2  Without Merge Heuristic

In the main manuscript, we propose two heuristics used to unwrap
a part into charts, Normal and Merge. Despite the higher cost of
computation, Merge often produces more visually appealing UV
maps with fewer charts. As illustrated in Fig. 14, the Merge heuristic
can usually unwrap the part in an "unfolding" manner, creating
less number of charts with a neater layout, comparing under the
same distortion threshold requirements with using only the Normal
Heuristics.

A2.3  Without Normal Heuristic

With two heuristics included in the pipeline, one can also opt to
use only the Merge throughout the pipeline. We show several ex-
ample results in Fig. 15. Due to its high computational cost, using
only Merge, especially at the beginning, incurs substantial runtime
overhead. To be precise, the Merge heuristic would compute an ori-
ented bounding box (OBB) and use projection to get initial charts,
and it could get hundreds of charts from a bumpy input. Trying to
merge all of them would introduce significant overhead for such
bumpy/uneven meshes. For example, on the bimba mesh on the
right side of the figure, the runtime increases from 147 seconds to
over 892 seconds. Moreover, due to its bumpy geometry, the merg-
ing process often results in overlapping, leading to an increase in
the number of charts. In essence, Merge could yield better results,
but only on simpler shapes. Therefore, it is most effective as a com-
plement to the Normal heuristic and should be invoked only when
Normal produces a sufficiently good result.
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A2.4 Using LSCM instead of ABF++

In our main pipeline, we adopt ABF++ [Sheffer et al. 2005] as the
primary flattening algorithm due to its fast performance and low-
distortion mappings. Most of our baselines utilize LSCM [Lévy et al.
2002], which generally offers faster runtimes thanks to its linear
energy formulation. However, despite its speed, LSCM generally
produces inferior mapping results compared to ABF++. Such sub-
optimal outputs can trigger additional recursions in our pipeline,
resulting in increased runtimes and more fragmented UV charts.
As shown in Table 7, using LSCM ultimately leads to both higher
runtime and a larger number of charts on the Trellis dataset.
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