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Fig. 1. We propose PartUV, a novel part-based UV unwrapping method for 3D meshes. Unlike traditional approaches that rely solely on local geometric priors
and often produce over-fragmented charts, PartUV combines learned part priors with geometric cues to generate a small number of part-aligned charts. We
evaluate our method on four diverse datasets—PartObjaverseTiny (man-made) [Yang et al. 2024], Trellis (AI-generated) [Xiang et al. 2024], ABC (CAD) [Koch
et al. 2019], and Common Shapes [Jacobson and contributors 2023]—and show that it produces significantly less fragmented UV mappings while maintaining
low distortion on par with baseline methods. Leveraging part-aware charts also enables applications such as generating one atlas per part.
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UV unwrapping flattens 3D surfaces to 2D with minimal distortion, often

requiring the complex surface to be decomposed into multiple charts. Al-

though extensively studied, existing UV unwrapping methods frequently

struggle with AI-generated meshes, which are typically noisy, bumpy, and

poorly conditioned. These methods often produce highly fragmented charts

and suboptimal boundaries, introducing artifacts and hindering downstream

tasks. We introduce PartUV, a part-based UV unwrapping pipeline that

generates significantly fewer, part-aligned charts while maintaining low dis-

tortion. Built on top of a recent learning-based part decomposition method

PartField, PartUV combines high-level semantic part decomposition with

novel geometric heuristics in a top-down recursive framework. It ensures
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each chart’s distortion remains below a user-specified threshold while min-

imizing the total number of charts. The pipeline integrates and extends

parameterization and packing algorithms, incorporates dedicated handling

of non-manifold and degenerate meshes, and is extensively parallelized for ef-

ficiency. Evaluated across four diverse datasets—including man-made, CAD,

AI-generated, and Common Shapes—PartUV outperforms existing tools and

recent neural methods in chart count and seam length, achieves comparable

distortion, exhibits high success rates on challenging meshes, and enables

new applications like part-specific multi-tiles packing. Our project page is

at https://www.zhaoningwang.com/PartUV.

CCS Concepts: • Shape modeling→ Shape analysis; • Mesh models→
Mesh geometry processing; Parametrization; Geometric algorithms.
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1 Introduction
UV unwrapping projects the 3D surface of a mesh onto a 2D plane,

assigning every 3D surface point a corresponding 2D UV coordinate.

This step is fundamental in 3D-content-creation pipelines because

it enables detailed surface information-such as material properties

(e.g., base-color, roughness, normal maps), along with auxiliary

maps like ambient occlusion and displacement—to be efficiently

stored and manipulated in 2D space.

A principal component of UV unwrapping is surface parame-

terization, which flattens the 3D surface while trying to preserve

geometric properties such as angles and areas. For meshes with

complex geometry, flattening the entire surface into a single 2D

chart introduces large distortion. Consequently, chart segmentation

(or seam cutting) is typically used to divide the mesh into multiple

charts along strategically placed seams, allowing each chart to be

flattened with reduced distortion. Finally, UV packing arranges the

resulting charts within the unit square (the UV atlas) to maximize

texture-space use.

Although UV unwrapping has been studied extensively, exist-

ing methods are typically tuned for well-behaved meshes, such as

those created by professional 3D artists. They often fail on more

complex, AI-generated meshes. Such meshes, typically extracted

from neural-field isosurfaces (e.g., via marching cubes [Lorensen

and Cline 1998]), tend to have bumpy surfaces, many small trian-

gles, and poor geometric quality (e.g., disconnected components

or holes). On such data, existing methods may time-out or return

extremely fragmented atlases in which a single chart holds only

one or a handful of triangles. This extreme fragmentation hampers

texture painting and editing, introduces texture-bleed and baking

or rendering artifacts at chart boundaries, and burdens downstream

applications with an unwieldy number of charts.

Some recent approaches mitigate fragmentation [Srinivasan et al.

2024; Zhang et al. 2024; Zhao et al. 2025] by representing the UV

mapping using a neural field and optimizing such a field for each 3D

shape from scratch. While these methods can effectively control the

number of charts generated, they typically run for more than thirty

minutes and still exhibit noticeable distortion. Other methods [Li

et al. 2018; Poranne et al. 2017] jointly optimize seam length and

distortion but are likewise computationally expensive. Moreover,

some existing approaches like [Lévy et al. 2002; Sorkine et al. 2002;

Zhou et al. 2004] segment charts or identify seams using heuristics

based on local geometric properties, rather than leveraging the

concept of geometric or semantic parts. This can lead to unintuitive

or suboptimal chart boundaries that split semantically coherent

regions across multiple charts, further complicating downstream

tasks such as texture authoring, part-based editing, and semantic-

aware rendering.

In this paper, we introduce PartUV, a part-based UV unwrap-

ping pipeline for 3D meshes that generates UV mappings with a

small number of part-aligned charts while maintaining low distor-

tion, as well as robust and efficient processing—typically completed

within a few to several tens of seconds. PartUV builds on a recent

learning-based method, PartField [Liu et al. 2025], which produces

a hierarchical part tree for the input mesh. PartUV also proposes

several novel geometric heuristics that further decompose simple

local parts into charts that can be flattened with minimal distortion.

Combining high-level semantic decomposition from PartField with

fine-grained geometric cuts, PartUV employs a top-down recursive

search that minimizes chart count while keeping each chart’s distor-

tion below a user-specified threshold. PartUV uses established sur-

face parameterization algorithms (e.g., ABF++ [Sheffer et al. 2005])

for chart flattening and proven packing algorithms for optimal atlas

layout. To ensure high speed and robustness, the pipeline incorpo-

rates extensive parallelization and acceleration strategies, as well as

dedicated handling of non-manifold and degenerate cases.

By explicitly incorporating semantic priors, our approach yields

several key benefits. First, semantics improve decomposition by

reducing excessive reliance on local geometry, which often causes

over-segmentation and long runtimes. Second, semantic cues pre-

serve the coherence of object parts, preventing chart boundaries

from cutting through meaningful regions (e.g., across the flat surface

of a TV screen, as in Figure 7, or a human face), thereby facilitating

editing and rendering tasks. Third, semantic grouping naturally

supports better chart packing strategies, allowing related charts

to be organized together—either within a single atlas (top right

of Figure 1) or across multiple atlases (bottom right of Figure 1).

This enhances organizational clarity and simplifies the process of

locating and editing related charts. Finally, seams guided by seman-

tic boundaries tend to fall in perceptually unobtrusive locations,

improving the visual quality of textured models.

We evaluate PartUV on four datasets spanning man-made, AI-

generated, CAD models, and common 3D shapes (e.g., Stanford

Bunny, XYZ Dragon), and compare it against widely used UV un-

wrapping tools such as xatlas [Young 2019], Blender [Community

[n. d.]], and Open3D [Zhou et al. 2018a], as well as the recent

neural-based methods [Srinivasan et al. 2024]. As shown in Fig-

ure 1, our method decomposes input meshes into significantly fewer

charts—also resulting in shorter seam lengths—while maintaining

low angular and area distortion comparable to baselinemethods. The

incorporation of explicit part priors not only helps the segmented

charts better align with part boundaries but also enables new appli-

cations, such as packing semantic-aligned parts into separate atlases.

Moreover, PartUV maintains a high success rate, handles a wide
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range of meshes (including large, complex, and non-manifold ones),

and processes each mesh quickly—typically within a few to several

tens of seconds.

2 Related Work

2.1 Mesh Parameterization
Disregarding mesh decomposition, mesh parameterization—the pro-

cess of mapping a 3Dmesh to a 2D domain while minimizing various

distortion metrics (e.g., isometric, conformal, equiareal)—is a funda-

mental operation in UV unwrapping [Rabinovich et al. 2017; Sawh-

ney and Crane 2017; Schüller et al. 2013]. Many methods directly

optimize UV coordinates based on mesh connectivity by solving

linear or nonlinear systems under fixed or free boundary conditions.

These include barycentric embeddings like Tutte’s embedding [Tutte

1963], Laplacian eigen-decomposition techniques [Belkin andNiyogi

2003; Mullen et al. 2008; Taubin 1995], and distortion-minimization

methods [Ben-Chen et al. 2008; Desbrun et al. 2002; Hormann and

Greiner 2000; Ray and Lévy 2003; Sander et al. 2001; Su et al. 2016;

Yan et al. 2005; Yueh et al. 2019], such as Least Squares Conformal

Maps (LSCM) [Lévy et al. 2002]. Some adopt local/global strate-

gies that combine per-triangle transformations (e.g., rotations) with

global stitching [Alexa et al. 2023; Liu et al. 2008; Sorkine and Alexa

2007]. In contrast, Angle-Based Flattening (ABF) methods [Sheffer

and De Sturler 2000; Sheffer and de Sturler 2001; Sheffer et al. 2005;

Zayer et al. 2007] optimize triangle angles before converting them

into UVs, typically offering better angle preservation than LSCM

but at higher computational cost due to nonlinear solvers. In this

paper, we adopt ABF for base unfolding, integrating it with various

mesh decomposition strategies.

2.2 Mesh Segmentation for UV Unwrapping
Mesh segmentation is a key step in UV unwrapping, aiming to divide

a complex 3D mesh into simpler patches, or charts, each of which

can be flattened with minimal distortion. Existing approaches can be

broadly categorized into four main strategies. Top-downmethods re-

cursively subdivide the mesh, often using spectral analysis [Liu and

Zhang 2007a,b; Pothen et al. 1990] or cuts along feature lines [Zhang

et al. 2005] and high-curvature regions [Lavoué et al. 2005]. Bottom-

up aggregation [Bhargava et al. 2025; Julius et al. 2005; Kalvin and

Taylor 1996; Lévy et al. 2002; Pulla et al. 2001; Sorkine et al. 2002;

Takahashi et al. 2011; Yamauchi et al. 2005; Zhou et al. 2004] grows

charts from small seeds (e.g., triangles), merging them based on

planarity or distortion bounds to maximize chart size under quality

constraints. Cut optimization [Carr et al. 2006; Gu et al. 2002; Li

et al. 2018; Pietroni et al. 2009; Poranne et al. 2017; Sander et al.

2003; Takahashi et al. 2011] focuses on identifying optimal seam

networks that minimize seam length, reduce flattening distortion, or

better suit specific parameterization goals. Clustering-based meth-

ods [Katz and Tal 2003; Roy 2023] group mesh elements based on

geometric similarity to form coherent segments. Commonly used

tools such as xatlas [Young 2019], Blender [Community [n. d.]], and

Open3D [Zhou et al. 2018a] primarily adopt bottom-up aggregation

strategies that rely solely on local geometric properties. In contrast,

PartUV integrates high-level semantic part priors from a learning-

based module with novel local geometric decomposition strategies

via a top-down recursive tree search.

2.3 Learning-Based Parameterization and Segmentation
Representing UV mappings with neural networks has attracted

attention due to their differentiability and composability. Neural

Surface Maps [Morreale et al. 2021] pioneered this direction by

learning mappings across collections of surfaces. Several approaches

jointly optimize UV parameterization and 3D reconstruction from

multi-view images using cycle-consistency and distortion-based

losses [Das et al. 2022; Xiang et al. 2021]. Others, such as NUVO [Srini-

vasan et al. 2024], solve for parameterizations directly from sampled

3D points. More recent methods [Zhang et al. 2024; Zhao et al. 2025]

design neural networks to emulate physical operations, including

face cutting, UV deformation, and unwrapping. However, all the

aforementioned techniques typically rely on per-shape optimization,

making them computationally expensive and often requiring tens

of minutes per shape. A few feedforward models address specific

tasks more efficiently, such as intra-category texture transfer [Chen

et al. 2022] and low-distortion patch selection [Liu et al. 2023].

To enhance UV chart decomposition, we explore the integration

of semantic part priors. Traditional learning-based part segmen-

tation methods [Jiang et al. 2020; Qian et al. 2022; Vu et al. 2022]

are restricted to closed-set categories due to the limited scale of

part-annotated datasets [Mo et al. 2019; Yi et al. 2016]. Recent ap-

proaches [Guo et al. 2024; He et al. 2024; Xu et al. 2023, 2024; Yang

et al. 2023; Yin et al. 2024; Zhou et al. 2018a] lifting priors from 2D

vision to 3D models [Kirillov et al. 2023; Li et al. 2022] for open-

world 3D part segmentation but rely on per-shape optimization,

leading to slow runtimes and noise sensitivity. In contrast, a re-

cent method, PartField [Liu et al. 2025], introduces a feedforward

model that learns part-aware feature fields for fast, hierarchical 3D

part decomposition. While semantic priors intuitively benefit UV

unwrapping, naïve integration can yield suboptimal results. Par-

tUV addresses this with a novel top-down strategy that interleaves

semantic segmentation and geometric flattening.

3 Method

3.1 Overview
For a 3D meshM = (𝑉 , 𝐹 ), PartUV decomposes the mesh faces into

a small collection of disjoint charts:

𝐹 =

𝐾⋃
𝑘=1

𝐶𝑘 , with 𝐶𝑖 ∩𝐶 𝑗 = ∅ (𝑖 ≠ 𝑗), (1)

where each chart 𝐶𝑘 is a connected subset of faces. We utilize an

Angle-Based Flattening algorithm(ABF++), to flatten each chart onto

a 2D plane, yielding mappings:

𝜙𝑘 : 𝐶𝑘 −→ R2, (2)

so that each vertex 𝑣𝑖 ∈ 𝑉 receives a corresponding 2D UV coordi-

nate u𝑖 = 𝜙𝑘 (𝑣𝑖 ) ∈ R2
, determined by the chart it belongs.

The primary challenge lies in decomposing the mesh into charts

{𝐶𝑘 }, a task essentially equivalent to identifying optimal seams for

mesh segmentation. Many state-of-the-art methods, such as xat-

las and Blender’s Smart UV, rely on geometric heuristics—such as
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Fig. 2. Pipeline of PartUV. Given a meshM, we first leverage the learning-based method PartField to predict a part-aware feature field. By applying a
clustering algorithm to this field, we obtain a hierarchical part tree T for the input meshM. We then recursively traverse the part tree T starting from the
root node. For each visited node P, we apply two novel geometry-based strategies to segment the corresponding part mesh into multiple sets of charts 𝒞.
Each chart in the set is then flattened using the ABF algorithm [Sheffer et al. 2005], and its distortion is evaluated. If the distortion exceeds a user-specified
threshold 𝜏 , we recursively traverse the left and right children of the part tree T. Otherwise, we adopt the segmented charts and their corresponding UV
mappings for the part mesh.

bottom-up greedy chart expansion based on face normals or distor-

tion metrics—to generate these charts. However, these strategies

typically produce overly fragmented charts and unintuitive or sub-

optimal boundaries, often splitting semantically coherent regions

across multiple charts.

In contrast, PartUV adopts a coarse-to-fine, two-stage strategy for

mesh decomposition. At a high level, it employs a recent learning-

based method called PartField (introduced in Section 3.2) to parti-

tion mesh faces into semantically coherent parts: 𝐹 =
⋃𝑀
𝑚=1 𝑃𝑚 ,

where each part 𝑃𝑘 exhibits relatively simple geometry—for instance,

cylindrical limbs, spherical toes. Subsequently, we introduce two

geometry-based heuristics (detailed in Section 3.4) to further seg-

ment each part into a small set of charts: 𝑃𝑚 =
⋃𝑁𝑚

𝑛=1
𝐶𝑚,𝑛 , ensuring

each resulting chart 𝐶𝑚,𝑛 can be flattened onto a 2D plane with

minimal distortion.

To accomplish this, PartUV employs a top-down recursive de-

composition search (detailed in Section 3.3) that minimizes the total

number of generated charts while ensuring the distortion for each

chart remains below a user-specified threshold 𝜏 . Since exhaustive

decomposition searches can incur substantial computational over-

head, we introduce acceleration and parallelization techniques for

efficiency. To ensure a complete and robust pipeline, Section 3.5 also

describes additional preprocessing and postprocessing procedures,

including handling non-manifold and multi-component meshes, as

well as performing UV packing.

3.2 Preliminary: PartField
PartField [Liu et al. 2025] trains a feed-forward neural network that

takes a 3D mesh as input and predicts a continuous, part-based fea-

ture field encoded as a triplane. By leveraging extensive contrastive

learning on part-labeled 3D data and large-scale unlabeled 3D data

with 2D pseudo part labels, PartField learns general hierarchical

concepts of semantic and geometric parts. For any 3D point, we

can obtain its high-dimensional part feature by interpolating the

triplane representation. Points whose features are similar—as mea-

sured by cosine similarity—are therefore more likely to belong to

the same part.

3.3 Top-Down Recursive Tree Search
After obtaining the hierarchical part-based feature field using Part-

Field, we first compute a representative part feature for each trian-

gular face by uniformly sampling 𝑠 3D points within the face and

averaging their corresponding point features. Next, we construct a

hierarchical part tree T using agglomerative clustering [Johnson

1967] on these face features. In this hierarchical tree structure, the

leaf nodes represent individual triangular faces, and the root node

encompasses the entire mesh.

A straightforward approach to mesh decomposition might in-

volve using PartField to directly generate a fixed number of parts

and attempting to flatten each to 2D individually. Alternatively,

one could adaptively traverse T from the root downward, checking

whether each node’s corresponding geometry can be flattened into a

2D chart with minimal distortion. However, we observe that relying

solely on parts generated by PartField often leads to suboptimal

results. This limitation arises because PartField primarily focuses

on semantic or coarse geometric partitioning and is less effective

for finer-scale, UV-related decompositions—such as accurately seg-

menting cylindrical or spherical regions into charts that minimize

distortion. To address this challenge, PartUV leverages PartField

primarily for high-level semantic decomposition into geometrically

simpler subparts and employs two geometry-based heuristics (elabo-

rated in Section 3.4) to further divide these semantically meaningful

parts into smaller charts amenable to low-distortion flattening. The

search algorithm interleaves these two strategies.

Formally, PartUV employs a top-down recursive decomposition

search—detailed in Algorithm 1—to optimally balance the chart

count against distortion constraints. Given a subtree node P (ini-

tially the root node of the tree T ), a distortion threshold 𝜏 , and a
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Algorithm 1 PartTreeSearch

Require: P (a PartField subtree node), distortion threshold 𝜏 , chart

budget 𝐵

Ensure: A UVChartSet 𝒞 = {𝐶1,𝐶2, · · · ,𝐶𝑘 } for P’s mesh, whose

charts 𝐶𝑖 have distortion ≤ 𝜏 and whose total chart count 𝑘 is

≤ 𝐵; return ⊥ if no such set exists.

1: procedure PartTreeSearch(P,𝜏 ,𝐵)
2: if 𝐵 < 1 then ⊲ budget exhausted

3: return ⊥
4: end if
5: H1 ← GenCandidatesH1(P .𝑚𝑒𝑠ℎ, 10) ⊲ Heuristic1

6: for all 𝒞 ∈ H1 do ⊲ 𝒞 is one of candidate𝑈𝑉𝐶ℎ𝑎𝑟𝑡𝑆𝑒𝑡

7: ParameterizeABF(𝒞) ⊲ flatten and compute distortion

8: end for
9: if min𝒞∈H1

𝒞.dist > 𝜏 then ⊲ no admissible H1 candidate

10: 𝐿 ← PartTreeSearch(P .𝑙𝑒 𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑, 𝜏,∞)
11: 𝑅 ← PartTreeSearch(P .𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑, 𝜏,∞)
12: return 𝐿 ⊕ 𝑅 ⊲ merge chart sets from the subtrees

13: else
14: H2 ← {GenCandidateH2(P .𝑚𝑒𝑠ℎ, 𝜏)} ⊲ Heuristic2

15: ParameterizeABF(H2 [0])
16: S ←

{
𝒞 ∈ H1 ∪H2 | 𝒞.dist ≤ 𝜏 ∧ NoOverlap(𝒞)

}
17: 𝒞best ← argmin𝒞∈S 𝒞.count

18: ⊲ Recurse to determine whether a better solution exists

19: 𝐵′ ← min(𝐵, 𝒞best .count − 1)
20: 𝐿 ← PartTreeSearch(P .𝑙𝑒 𝑓 𝑡, 𝜏, 𝐵′ − 1)
21: 𝑅 ← PartTreeSearch(P .𝑟𝑖𝑔ℎ𝑡, 𝜏, 𝐵′ − 𝐿.count)
22: 𝒞comb ← 𝐿 ⊕ 𝑅
23: 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 ← 𝒞comb .dist ≤ 𝜏 ∧ NoOverlap(𝒞comb)
24: if 𝒞comb .count < 𝒞best .count ∧ 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 then
25: 𝒞best ← 𝒞comb

26: end if
27: return 𝒞best

28: end if
29: end procedure

chart budget 𝐵 (initially set to∞), the algorithm searches for a valid

chart decomposition of P’s mesh that satisfies three key conditions:

each chart has a distortion of at most 𝜏 , no charts overlap in 2D,

and the total number of charts does not exceed 𝐵. If no feasible

decomposition exists, the algorithm returns failure (⊥).
Specifically, the algorithm begins by generating candidate chart

decompositions for nodeP’s mesh using a primary geometric heuris-

tic (Heuristic1). Each candidate chart set 𝒞 = {𝐶𝑖 }, consisting of

up to 𝑡 charts, is flattened using Angle-Based Flattening (ABF), and

its distortion is evaluated. If none of the candidate decompositions

with up to 𝑡 charts from Heuristic1 satisfy the distortion constraint

(i.e., 𝛿min > 𝜏), the algorithm utilizes the PartField tree to divide the

mesh and recursively searches both the left and right child subtrees

without budget constraints, then merges their respective optimal

chart sets.

Conversely, if an admissible candidate decomposition is found

through Heuristic1, we further refine it using a secondary heuristic

(Heuristic2) designed to potentially yield fewer charts. Among these

candidates, we select the best solution 𝒞best with the minimal chart

count that satisfies the distortion and overlap constraints.

Before accepting this solution, the algorithm performs a final

check by recursively exploring the left and right child nodes of the

PartField subtree, using a reduced chart budget (𝐵′), which is derived
from the best candidate’s chart count minus one. If the combined

solution from this subtree search yields a valid and superior de-

composition (i.e., fewer charts than𝒞best), it replaces the previously

identified best solution. The chart budget 𝐵 prevents the search from

going too deep. As the search progresses, 𝐵 tightens, and recursion

stops when candidates exceed it. In practice, the search rarely goes

very deep.

By strategically interleaving hierarchical semantic guidance from

PartField with fine-grained geometric heuristics and systematic

recursive exploration, our proposed decomposition search achieves

semantically coherent, distortion-bounded, and notably compact

mesh parameterizations—characterized by a small number of charts.

3.4 Geometry-Based Part Decomposition
In this section, we introduce two heuristics, Normal and Merge, to
further decompose a part 𝑃𝑚 generated by PartField and exhibiting

simple geometry. The goal is to divide 𝑃𝑚 into multiple charts,

denoted as 𝑃𝑚 =
⋃𝑁𝑚

𝑛=1
𝐶𝑚,𝑛 , such that each chart can be flattened

to 2D with low distortion.

The first heuristic, referred to as Normal (line 5 in Algorithm 1), is

based on face normals. We apply an agglomerative clustering algo-

rithm [Johnson 1967] to the face normals of 𝑃𝑚 ’s mesh, partitioning

its triangle faces into charts, where each chart is composed of con-

nected faces with similar normals. This clustering is performed once

for 𝑃𝑚 , producing 𝑡 candidate decompositions with 1 to 𝑡 charts (we

use 𝑡 = 10 in our experiments). For each candidate decomposition,

we apply the Angle-Based Flattening (ABF) algorithm to flatten the

charts and evaluate distortion. Since ABF aims to preserve angles,

we quantify distortion using an area stretch metric, defined as:

distortion(𝒞) =max

𝐶∈𝒞
©­« 1

|𝐶 |
∑︁
𝑓 ∈𝐶

max

(
stretch(𝑓 ), 1

stretch(𝑓 )

)ª®¬ , (3)

where 𝐶 denotes a single chart composed of multiple connected

faces, and 𝒞 denotes the set of all charts in the decomposition. The

stretch of a triangle face 𝑓 is computed as:

stretch(𝑓 ) = area2𝐷 (𝑓 )
area3𝐷 (𝑓 )

/ ©­« 1

|𝐶 |
∑︁
𝑓 ′∈𝐶

area2𝐷 (𝑓 ′ )
area3𝐷 (𝑓 ′ )

ª®¬ . (4)

Note that both PartField and the Normal heuristic employ the ag-

glomerative clustering algorithm to group faces into parts or charts.

The key difference lies in the features used: PartField utilizes learned

high-level part features, while heuristic Normal relies on low-level

geometric face normals. These two strategies are thus consistent in

spirit and complementary in practice.

The Normal heuristic is simple, fast, and often yields satisfactory

results. However, we also propose a second, more computationally

expensive heuristic, called Merge (line 14 in Algorithm 1), which

may produce decompositions with fewer charts. Given a part 𝑃𝑚 ,

the Merge heuristic begins by computing its oriented bounding

box (OBB). It then assigns each triangle face a label from 1 to 6,

corresponding to the OBB face normal with which the triangle’s
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normal is most closely aligned. Using both face connectivity and

these labels, we segment the faces into multiple connected compo-

nents. These components are then sorted by size (small to large), and

we iteratively attempt to merge each component with its adjacent

neighbors, starting from the one with the longest shared edges. For

each merge attempt, we temporarily merge two components and

apply ABF to flatten the combined chart. The merge is accepted

if the resulting chart satisfies the distortion threshold and is free

of overlaps. This merging process continues until no further valid

merges can be made, after which the final chart set is returned. Since

the Merge heuristic often begins with many small components and

performs multiple ABF calls during its iterative merging process, it

is significantly more expensive than the Normal heuristic. However,
it may yield better decompositions with fewer charts. Therefore, we

only invoke the Merge heuristic when the Normal heuristic returns
a valid (admissible) decomposition.

3.5 Runtime Optimization and Pre- and Post-processing
Runtime Optimization To ensure efficiency despite the compu-

tational cost of recursive decomposition and repeated ABF invo-

cations, we adopt two key strategies during the decomposition

process. First, we parallelize all recursive calls to the left and right

subtrees during the top-down search, allowing the algorithm to ex-

ploit multi-core processing and significantly accelerate the overall

decomposition. Second, to avoid the high cost of repeatedly invok-

ing Angle-Based Flattening (ABF) on dense meshes, we employ a

GPU-accelerated mesh simplification algorithm [Oh et al. 2025] to

generate low-resolution approximations of candidate charts. During

simplification, the chart boundary is kept fixed to preserve the geo-

metric structure relevant to UV mapping. These simplified charts

are used to estimate distortion metrics quickly (i.e., surrogate dis-

tortion) during intermediate evaluations. Once the final chart set is

determined, ABF is applied to the original high-resolution mesh to

produce accurate UV coordinates and distortion measurements.

Non-Manifold and Multi-Component Meshes Since the ABF
algorithm assumes each input chart is a manifold and connected sur-

face, additional processing is required when handling non-manifold

or multi-component meshes. For non-manifold meshes, we detect all

non-manifold edges—i.e., edges shared by more than two faces—and

resolve them by duplicating the shared vertices and splitting each

such edge into 𝑁 − 1 distinct edges, where 𝑁 is the number of inci-

dent faces, thereby converting the structure into a manifold form

suitable for flattening. For meshes containing multiple connected

components, we initially proceedwith the proposed PartField-guided

hierarchical decomposition. If a part mesh consists of disconnected

components, we skip heuristic-based decomposition at that level

and instead recursively explore the left and right subtrees of the Part-

Field hierarchy. However, if PartField fails to further segment the

multiple components after reaching a predefined recursion depth,

we fall back to applying the geometric heuristics and ABF flattening

to each connected component at that level individually, in order to

avoid excessively fragmented decomposition.

UVPackingWhile our primary focus is on decomposing 3Dmeshes

into charts and generating corresponding low-distortion 2D parame-

terizations, our method is fully compatible with a variety of existing

UV packing algorithms. A distinguishing feature of our approach

is that chart decompositions are grouped based on semantically

meaningful parts, enabling more structured and application-aware

packing strategies. For example, charts belonging to the same part

can be grouped together during packing. Alternatively, part groups

can be packed into an arbitrary number of UV atlas squares (e.g.,

multiple [0, 1]2 spaces) with a semantically balanced distribution

across atlases. This semantic hierarchy not only improves organi-

zational clarity but also benefits downstream applications such as

texture painting or editing, where charts belonging to the same part

remain spatially close and are easier to manipulate collectively.

4 Experiments

4.1 Implementation Details and Evaluation Setup
Implementation Details.We train PartField [Liu et al. 2025] on

Objaverse [Deitke et al. 2022] using 8 NVIDIA H100 GPUs for 15

days. During inference, we sample 10 points per face and aver-

age their features for face clustering and part tree construction.

The core pipeline of PartUV is implemented in C++17, and we use

UVPackmaster [Łukasz Czyż 2025] for final group-based UV pack-

ing. A distortion threshold of 1.25 is used in all experiments. For

ABF++, we run 5 iterations per call, and follow Blender to set the

gradient early-stop condition. Mesh simplification is controlled by a

curvature-related threshold of 1e-4 and a maximum iteration count

of 1,000. All parameters are fixed across experiments. All meth-

ods are evaluated on a cluster node with a 96-core Intel® Xeon®

Platinum 8468 CPU and an NVIDIA H100 GPU.

Evaluation Datasets. To comprehensively evaluate the approaches

across diversemesh sources, qualities, and styles, we use four datasets:

(a) Common Shapes [Jacobson 2013], a GitHub repository of 24

widely used models in graphics (e.g., Bimba, Igea, Stanford Bunny)

with provided processed .obj files; (b) PartObjaverseTiny [Yang et al.

2024], a 200-shape subset of Objaverse [Deitke et al. 2022] featur-

ing high-quality, man-made meshes with multiple components and

smooth surfaces; (c) ABC [Koch et al. 2019], a CAD dataset of me-

chanical models combining sharp and smooth features—we use

the first 100 meshes from its initial batch; and (d) Trellis [Xiang
et al. 2024], which includes 114 AI-generated meshes from a recent

3D diffusion-based generative model. These meshes are typically

noisy and geometrically low-quality, posing greater challenges than

human-made counterparts.

Evaluation Metrics. We evaluate the quality of the generated UV

maps from four perspectives: (1) Number of Charts: For each shape,

we count the number of charts and report both the average and

median values across the dataset. (2) Seam Length: We compute the

seam length by summing the lengths of all chart boundary edges,

with UV coordinates normalized to a [0, 1] grid. The median value

is reported across the dataset. (3) Angular (Conformal) Distortion:
We compute the cosine between the tangent and bitangent vectors

of each face. The distortion for a shape is defined as one minus the

average cosine across all faces [Srinivasan et al. 2024]. We report the

average distortion across the dataset. (4) Area (Equiareal) Distortion:
We compute both area distortion and overall area distortion. Area
distortion is defined as in Equation 3, based on the chart with the

highest distortion in each shape. Overall area distortion is computed

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



PartUV: Part-Based UV Unwrapping of 3D Meshes • 7

Fig. 3. Quantitative comparison between Blender [Community [n. d.]], xatlas [Young 2019], and PartUV. Unlike Blender and xatlas, which rely
solely on local geometric properties for UV unwrapping, PartUV integrates high-level semantic priors with low-level geometric heuristics, enabling part-based
chart decomposition. As a result, it produces significantly fewer charts, with boundaries that better align with semantic parts.

by aggregating all triangles across all charts, calculating individual

distortions, and averaging them. For both metrics, we first compute

per-shape values and then average them across the dataset. All

triangle-level distortion values are clipped to a maximum of 10.

Notably, overall area distortion may be smoothed by the number of

faces, while area distortion more effectively highlights problematic

regions in the UVmaps. We did not report stretch 𝐿2 and 𝐿∞ [Sander

et al. 2001] since they are per-triangle metrics that can diverge to

infinity when triangles flip or have near-zero area—issues that are

common in baselines such as xatlas, making direct comparison less

meaningful.

4.2 Comparison with Baselines
Baselines.We compare PartUVwith commonly used tools—Blender’s

Smart UV Project [Community [n. d.]], xatlas [Young 2019], and

Open3D—aswell as optimization-basedmethods, includingNuvo [Srini-

vasan et al. 2024] and OptCuts [Li et al. 2018].

Blender, xatlas, and Open3D decompose meshes into charts us-

ing bottom-up strategies guided by local geometric priors. Blender

clusters triangles based on mesh normals and flattens each chart

using simple planar projection. xatlas employs a greedy algorithm

that balances geometric deviation, UV distortion, and seam cost,

followed by Least Squares Conformal Maps (LSCM) [Lévy et al.
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Fig. 4. Open3D not only suffers from a limited success rate but also produces
results with large distortion, which may reduce their practical utility.

Fig. 5. Nuvo and OptCuts incur significantly longer optimisation times for
each shape. Nuvo’s results also exhibit large distortion.

2002] for flattening. Open3D builds on Microsoft’s UVAtlas [Corpo-

ration 2023; Sander et al. 2002; Zhou et al. 2004], which uses region

growing guided by the isometric stretch metric and flattens charts

with LSCM. Among optimization-based methods, Nuvo [Srinivasan

et al. 2024] learns a continuous UV mapping via a neural field by

minimizing distortion losses with various regularizations. OptCuts

jointly optimizes surface cuts and distortion under a global bijectiv-

ity constraint. Both methods require significantly longer runtimes

per mesh.

Results. As shown in Table 1, Blender and xatlas often produce

over-fragmented charts, whereas PartUV generates UV maps with

significantly fewer charts. For instance, on the Common Shapes

dataset, PartUV uses only 1/31 as many charts as Blender. Conse-

quently, it also results in shorter seam lengths. PartUV maintains

low levels of both angular and area distortion, while xatlas may

Table 1. Quantitative comparison between Blender [Community
[n. d.]], xatlas [Young 2019], and PartUV.

success average median median overall

dataset method rate # of # of seam angular area area time

(%) charts ↓ charts ↓ length ↓ distort. ↑ distort. ↓ distort. ↓ (s)

Common Shapes

(24 shapes)

Blender 100.0 1360.3 332.5 44.7 0.906 1.172 1.102 0.3

xatlas 100.0 974.8 301.0 42.9 0.987 1.885 1.504 77.9

ours 100.0 43.6 15.0 16.8 0.982 1.404 1.131 54.0

Trellis

(114 shapes)

Blender 100.0 3352.9 1957.0 94.5 0.921 1.252 1.107 1.1

xatlas 100.0 1541.6 895.0 91.2 0.984 2.357 1.093 13.1

ours 100.0 538.8 221.5 55.9 0.961 1.300 1.135 41.9

ABC

(100 shapes)

Blender 100.0 305.3 78.0 25.0 0.992 1.122 1.067 0.7

xatlas 100.0 249.6 56.0 26.5 1.000 1.192 1.030 31.0

ours 100.0 74.0 18.0 19.8 0.999 1.175 1.058 43.1

Part

Objaverse

Tiny (200 shapes)

Blender 100.0 1509.2 647.5 70.2 0.925 1.325 1.115 0.2

xatlas 100.0 1142.1 491.5 67.0 0.982 1.728 1.286 4.4

ours 100.0 463.3 155.5 39.3 0.954 1.271 1.112 21.0

Table 2. Quantitative comparison between Open3d [Zhou et al.
2018b] and PartUV. Note that Open3D has a limited success rate, and
the reported numbers are averaged over the easier cases it successfully
completes. Despite this, Open3D still exhibits large distortion.

success average overall average median median

dataset method rate angular area area # of # of seam time

(%) distort. ↑ distort. ↓ distort. ↓ charts ↓ charts ↓ length ↓ (s)

Common Shapes
Open3d 79.2 0.852 1.509 1.191 19.8 12.0 11.8 19.8

ours 100.0 0.987 1.281 1.128 24.4 12.0 15.1 52.3

Trellis

Open3d 39.5 0.859 1.931 1.264 79.8 40.0 25.9 24.1

ours 100.0 0.984 1.308 1.144 97.9 51.0 27.4 23.7

ABC

Open3d 83.0 0.878 1.459 1.162 15.0 8.0 9.3 17.6

ours 100.0 0.994 1.171 1.062 35.0 15.0 18.6 39.6

PartObjaverse

Tiny

Open3d 52.5 0.799 2.772 1.295 161.5 80.0 25.6 10.0

ours 100.0 0.957 1.254 1.117 227.1 91.0 30.6 14.0

Table 3. Quantitative comparison between Nuvo [Srinivasan et al.
2024] and PartUV.

success average overall average

dataset method rate angular area area # of time

(%) distortion ↑ distortion ↓ distortion ↓ charts ↓ (s)

Common Shapes

nuvo 100.0 0.802 2.722 1.940 17.0 2908.8

ours 100.0 0.987 1.281 1.128 24.4 52.3

exhibit large area distortion on certain challenging shapes. Despite

utilizing a more exhaustive decomposition search and a compu-

tationally expensive ABF flattening algorithm to achieve higher

quality, PartUV maintains a runtime comparable to xatlas, typically

completing in tens of seconds. See Figure 3 for a qualitative compar-

ison, where PartUV leverages semantic part information to produce

chart boundaries that align more closely with object semantics.

We report the comparison results with Open3D separately in Ta-

ble 2 due to its failure to complete some shapes within a reasonable

time. For example, on the challenging Trellis dataset, it achieves a

success rate of only 39.5%. In Table 2, we report the average perfor-

mance only over the easy cases that Open3D successfully processes.

For these cases, Open3D achieves a similar number of charts and

seam lengths compared to our method. However, this comes at the

cost of significant distortion. For instance, while Blender, xatlas,

and PartUV all achieve angular distortion scores mostly above 0.95

across all datasets, Open3D consistently falls below 0.9 and even 0.8

in some cases. A similar phenomenon is observed for area distortion.

Please refer to Figure 4 and Figure 6 for qualitative examples, where

Open3D produces large distortions, rendering the UV mappings less

suitable for practical applications.
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Fig. 6. Texture-map comparison among Blender, xatlas, and our PartUV.

Compared to Nuvo and OptCuts, we observe that although both

methods effectively reduce the number of charts, they typically re-

quire significantly longer optimization times—often exceeding 30

minutes or even several hours. Moreover, Nuvo leads to substan-

tially higher distortion, as shown in Table 3 and Figure 5. While

OptCuts achieves low distortion, its success rate is limited: it pro-

duces outputs for only 9 out of 24 shapes in the Common Shapes

dataset. Additionally, neither method incorporates the concept of

semantic parts during optimization.

See supplementary material for additional qualitative examples

UV efficiency comparisons, and analysis of Open3D results.

4.3 Applications and Analysis
In this section, we demonstrate the benefits of using our PartUV:

Texture Editing and Replacement. Since our UV mappings are

less fragmented, texture maps can be more effectively edited or

modified in 2D space. In Figure 7, we show that our UV maps en-

able clean placement of conference logos, whereas the UV maps

generated by Blender or xatlas fail to do so due to their overly frag-

mented layouts. Figure 8 further showcases an application where

the texture is replaced with various tiling patterns. Because xatlas

and Blender often produce numerous small charts containing only

a few triangles, noticeable artifacts appear on the mesh surface. In

contrast, our method preserves significantly better visual quality.

Fig. 7. Unlike our baselines, which generate over-fragmented UV maps that
hinder 2D texture editing, PartUV produces significantly fewer charts with
part-aligned boundaries, enabling more effective 2D operations.

Fig. 8. Our UV map enables easy texture replacement, whereas xatlas /
Blender maps cause severe artefacts due to over-segmentation.

Texture Compression. UV maps always require padding between

charts. When the UV layout is over-segmented, more padding is

needed, which increases the risk of color bleeding. In Figure 10,

we demonstrate that reducing the UV map resolution from 1024 to

128—a common setting in mobile games—results in noticeable color

bleeding for textures generated by xatlas and Blender. In contrast,

PartUV is free from such issues.

Multi-Atlas Wrapping. As shown in Figure 1 and Figure 9, Par-

tUV supports part-based UV packing. Given the desired number of

atlases, it can automatically extract semantic-meaningful parts and

pack across separate atlases, facilitating downstream applications

such as texture editing.

Adaptive Threshold Adjustment. PartUV allows users to specify

a distortion threshold 𝜏 , enabling adaptive control over the trade-off

between the number of charts and the distortion in the generated

UV maps, as shown in Figure 11.

4.4 Ablation Studies
PartField.We integrate semantic part priors with geometric heuris-

tics through an adaptive recursive tree search. A naive way to com-

bine them is to first use PartField to decompose the shape into a

fixed set of 20 parts, and then further decompose each part using

the two heuristics. As shown in Table 4(a), this naive combination

results in high distortion, as some parts may remain too complex to
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Fig. 9. Our part-based UV unwrapping can pack all charts into a single atlas or multiple atlases by semantic part, aiding tasks such as 2-D editing.

Fig. 10. xatlas and Blender generate over-fragmented UV maps that may
introduce color bleeding, especially with low-resolution texture maps (e.g.,
in mobile games). In contrast, our results are free from such issues.

Table 4. Ablation study conducted on the Trellis dataset.

version

average median area angular seam

timeid # charts ↓ # charts ↓ distort.↓ distort.↑ length ↓

a fixed 20 parts 397.02 223.00 2.18 0.9687 66.42 207.75

b replace PF feat. with face normal 574.43 259.50 1.28 0.9708 64.46 83.67

c no merge 763.74 270.50 1.30 0.9607 62.75 38.00

d no recursion 928.23 237.00 1.31 0.9630 59.17 40.66

e no distortion surrogate 575.31 216.50 1.24 0.9632 57.88 61.48

f full 538.81 221.50 1.30 0.9609 57.92 41.88

be flattened with low distortion. We also experimented with replac-

ing the PartField features with face normals and then applying the

original recursive tree search. As shown in Table 4(b), this variant

doubles the runtime, increases the number of charts, and produces

chart boundaries that no longer align with semantic parts.

MergeHeuristic.Wepropose an innovative geometry-based heuris-

tic, Merge, for chart decomposition. When this heuristic is removed

and only the Normal heuristic is used (Table 4(c)), we observe an

increase in the number of charts.

Recursion. As shown in Alg. 1, Line 18, we do not immediately

return the first solution found but continue the search to find poten-

tially better solutions. When this strategy is removed (Table 4(d)),

we observe a significant increase in the number of charts.

Distortion Surrogate. To accelerate the search, we first simplify

the mesh during intermediate iterations and then apply the ABF

algorithm to the simplified mesh to compute an approximate dis-

tortion, which helps guide the search more efficiently. When this

strategy is removed (Table 4(e)), we observe an increase in runtime.

We show more ablations and visualizations, including compar-

isons of different flattening algorithms, in the Appendix.

4.5 95th Percentile Distortion Metrics
To evaluateworst-case behavior, we additionally report 95th-percentile

distortion metrics and compare them with baseline methods on four

datasets. As shown in Table 5, we consider two metrics: distortion
95th-shape, defined as the 95th-percentile area distortion across all

shapes in a dataset, and distortion 95th-chart, which first computes

the 95th-percentile area distortion across all charts within a shape

and then averages the results over all shapes in the dataset. As the

Fig. 11. PartUV lets users set a distortion threshold, flexibly controlling
both distortion and chart count.

Table 5. 95th-percentile area distortion metrics across four datasets.
Dataset Metric Blender xatlas ours

ABC distortion 95th-shape ↓ 1.175 1.726 1.273

distortion 95th-chart ↓ 1.093 1.041 1.133

Common Shapes distortion 95th-shape ↓ 1.885 1.504 1.404

distortion 95th-chart ↓ 1.139 1.131 1.169

PartObjaverseTiny distortion 95th-shape ↓ 1.728 1.286 1.271

distortion 95th-chart ↓ 1.132 1.079 1.116

Trellis distortion 95th-shape ↓ 1.319 4.701 1.442

distortion 95th-chart ↓ 1.120 1.099 1.220

table shows, our method consistently yields low 95th-percentile

distortion values, with a maximum of 1.442, whereas baseline meth-

ods often produce much higher distortions (e.g., 4.701, 1.885, 1.728).

These results demonstrate that our approach achieves more robust

and stable performance under challenging cases.

5 Discussion on Failure Cases
Our method struggles with poor input mesh topology. For example,

it cannot handle 3D meshes containing self-intersections. In such

cases, the algorithm may recurse deeply in an attempt to resolve

the intersections, which can lead to fragmented charts. Moreover,

when input meshes are extremely fragmented—for instance, those

with over 1000 components—the unwrapping results also become

highly fragmented. In these cases, remeshingmay be required before

UV unwrapping. However, our method performs well on general

meshes with few components and does not require meshes to be

watertight or manifold.

6 Conclusion
In this paper, we propose PartUV, a novel framework for UV un-

wrapping that strategically integrates semantic part priors from

learning-based methods with two novel geometric heuristics. Par-

tUV outperforms existing approaches by generating significantly

fewer charts, low distortion, and chart boundaries that align with

semantic parts. We demonstrate the advantages of this pipeline

through several applications.
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Appendix

Fig. 12. A demonstration of effects from Open3D’s higher distortion results,
creating curved (from angular distortion) and uneven (from area distortion)
stripes.

Table 6. Efficiency (↑) comparison across methods

ours Blender Open3D xatlas

Part-Objaverse-Tiny 0.606 0.514 0.332 0.666

Trellis 0.571 0.430 0.242 0.619

ABC 0.568 0.554 0.490 0.646

Common Shapes 0.575 0.460 0.461 0.561

A1 Additional Results and Comparisons

A1.1 MoreQualitative Results
In the supplementary material, we provide an HTML file contain-

ing more qualitative and quantitative comparisons between our

method and our baselines. The examples are gathered across the

four datasets we used in the main paper. The metrics are computed

and reported for individual shapes.

A1.2 Efficiency
As we create the UV map with regard to semantic features and

groups, it may raise doubts regarding the final efficiency of the

resulting UV maps. In Table 6, we show the comparison of the

average efficiency of valid results between our method and the

baselines. In our experiments, we always group the charts from

the same parts when packing, and we use UVPackMaster [Łukasz

Czyż 2025] to get the final packed UV map. We set the "heuristic

search" time to 3 seconds for UVPackMaster, while most meshes

finish within microseconds. We define efficiency as the total area of

valid 2D faces within the normalized 0–1 UV space. It can be seen

that our method does not hurt the overall efficiency, and it remains

competitive compared to our baseline methods.

A1.3 Analysis and Visualization of Open3D Results
In our experiments, particularly on the more challenging meshes,

Open3D frequently crashed or exceeded the allotted time budget.

Fig. 13. When using the face normals as agglomerative features for top-
down tree construction, the pipeline generates messier results with no
semantic alignment.

We designate a shape as timed-out when its runtime surpasses 30

seconds plus three times the longest runtime among other methods

on the current shape.

Even for the shapes where Open3D successfully produces a UV

map, the results still exhibit notable shortcomings. At first glance,

Open3D seemingly generates results with chart numbers similar to

our method, albeit with slightly higher distortion. However, such dif-

ferences in distortion can significantly affect downstream tasks. In

Fig. 12, we show one example from the ABC dataset, which Open3D

creates a layout with a similar chart number with ours. However,

with 0.2 difference in area distortion and 0.1 difference in angular

distortion, the deformation of the texture is clearly noticeable. In

particular, when using a striped texture, angular distortion leads

to curved lines (bottom half of highlighted region), while area dis-

tortion causes uneven width (top half of highlighted region)—both

prominently visible in the red-marked rectangle of the figure, not

to mention the seams that disregard underlying geometric features.

In contrast, our results exhibit minimal distortion, maintain the

regularity of the shape, and feature seams that largely respect the

underlying geometric structure.

A2 Additional Ablation Results

A2.1 Replacing PartField feature with Face Normals
In our main pipeline, we create a top-down tree of faces with ag-

glomerative clustering of PartField-predicted features. A simpler

alternative would be replacing such features with face normals. In

Fig. 13, we provide some visual examples of meshes using normal as

Agglomerative features versus using the PartField-predicted ones.

It can be seen that using normal is substantially prone to producing

curly shapes, like the cherry on the left. Moreover, though being

able to predict a similar number of charts under the same heuristic

settings, using normal as the agglomerative features leads to way

less organized and neat UV layouts, as exemplified on the right of

the figure.
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Fig. 14. Visual comparison of with and without the merge heuristics.

Table 7. Comparison between using ABF++ (Ours) and LSCM (Ours-
LSCM) in our pipeline.

average median area seam time

# charts ↓ # charts ↓ distort. ↓ length ↓ (s)

Ours-LSCM 1154.12 363.00 1.27 65.48 58.61

Ours 538.81 221.50 1.30 57.92 41.88

A2.2 Without Merge Heuristic
In the main manuscript, we propose two heuristics used to unwrap

a part into charts, Normal and Merge. Despite the higher cost of
computation, Merge often produces more visually appealing UV

maps with fewer charts. As illustrated in Fig. 14, theMerge heuristic
can usually unwrap the part in an "unfolding" manner, creating

less number of charts with a neater layout, comparing under the

same distortion threshold requirements with using only the Normal
Heuristics.

A2.3 Without Normal Heuristic
With two heuristics included in the pipeline, one can also opt to

use only the Merge throughout the pipeline. We show several ex-

ample results in Fig. 15. Due to its high computational cost, using

only Merge, especially at the beginning, incurs substantial runtime

overhead. To be precise, the Merge heuristic would compute an ori-

ented bounding box (OBB) and use projection to get initial charts,

and it could get hundreds of charts from a bumpy input. Trying to

merge all of them would introduce significant overhead for such

bumpy/uneven meshes. For example, on the bimba mesh on the

right side of the figure, the runtime increases from 147 seconds to

over 892 seconds. Moreover, due to its bumpy geometry, the merg-

ing process often results in overlapping, leading to an increase in

the number of charts. In essence, Merge could yield better results,

but only on simpler shapes. Therefore, it is most effective as a com-

plement to the Normal heuristic and should be invoked only when

Normal produces a sufficiently good result.

Fig. 15. Using onlyMerge heuristic from the beginning would incur more
runtime, and more fragmented charts on bumpy meshes.

A2.4 Using LSCM instead of ABF++
In our main pipeline, we adopt ABF++ [Sheffer et al. 2005] as the

primary flattening algorithm due to its fast performance and low-

distortion mappings. Most of our baselines utilize LSCM [Lévy et al.

2002], which generally offers faster runtimes thanks to its linear

energy formulation. However, despite its speed, LSCM generally

produces inferior mapping results compared to ABF++. Such sub-

optimal outputs can trigger additional recursions in our pipeline,

resulting in increased runtimes and more fragmented UV charts.

As shown in Table 7, using LSCM ultimately leads to both higher

runtime and a larger number of charts on the Trellis dataset.
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